Yanshu Shi , Mengke Guo , Yiqian Wang , Xuekun Wang , Jile Wang , Xiaoyun Qin , Yumin Song , Hai Wang , Xiaoyan Wang , Tingting Guo
{"title":"Reconstructed nano-titanyl phthalocyanine for high-performance photodetection","authors":"Yanshu Shi , Mengke Guo , Yiqian Wang , Xuekun Wang , Jile Wang , Xiaoyun Qin , Yumin Song , Hai Wang , Xiaoyan Wang , Tingting Guo","doi":"10.1016/j.cap.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><div>With the rising demand for high-performance organic small-molecule semiconductor materials in optoelectronic devices, reconstructing specific morphologies of nano-phthalocyanines is of great significance. Herein, TiOPc ultrathin nanosheets (UNSs) and nanosheets (NSs) are reconstructed using a simple and effective physical vapor deposition (PVD) method. The thickness and lateral sizes of the UNSs are between 1 to 10 nm and 50–200 nm, respectively. The subsequent experimental results of photodetection exhibited that the photocurrent of UNSs/NSs is nearly four to five orders of magnitude higher than that of the raw materials at 10 V and show good stability. The photoresponsivity of the UNSs is about 3.37 × 10<sup>4</sup> times that of the raw materials, demonstrating good photoelectric conversion capability. Under different wavelengths, the photocurrents of the UNSs are consistently higher than those of the NSs and the raw materials. The NSs exhibit the fastest response speed, with rise and fall times of 194 ms and 193 ms, respectively, under 395 nm. Furthermore, the photoresponsive properties of the reconstructed UNSs and NSs are better than those of most other reported MPc materials. Our results indicate that TiOPc UNSs and NSs hold great application prospects in high-performance optoelectronic devices.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 11-17"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000173","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rising demand for high-performance organic small-molecule semiconductor materials in optoelectronic devices, reconstructing specific morphologies of nano-phthalocyanines is of great significance. Herein, TiOPc ultrathin nanosheets (UNSs) and nanosheets (NSs) are reconstructed using a simple and effective physical vapor deposition (PVD) method. The thickness and lateral sizes of the UNSs are between 1 to 10 nm and 50–200 nm, respectively. The subsequent experimental results of photodetection exhibited that the photocurrent of UNSs/NSs is nearly four to five orders of magnitude higher than that of the raw materials at 10 V and show good stability. The photoresponsivity of the UNSs is about 3.37 × 104 times that of the raw materials, demonstrating good photoelectric conversion capability. Under different wavelengths, the photocurrents of the UNSs are consistently higher than those of the NSs and the raw materials. The NSs exhibit the fastest response speed, with rise and fall times of 194 ms and 193 ms, respectively, under 395 nm. Furthermore, the photoresponsive properties of the reconstructed UNSs and NSs are better than those of most other reported MPc materials. Our results indicate that TiOPc UNSs and NSs hold great application prospects in high-performance optoelectronic devices.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.