Thermal analysis of nanolayer interfaces and nanoparticle shape reactivity in EMHD micromagnetorotational ternary nanofluid flow within deceased bifurcated artery
{"title":"Thermal analysis of nanolayer interfaces and nanoparticle shape reactivity in EMHD micromagnetorotational ternary nanofluid flow within deceased bifurcated artery","authors":"Soumini Dolui , Bivas Bhaumik , Soumen De","doi":"10.1016/j.matcom.2024.12.013","DOIUrl":null,"url":null,"abstract":"<div><div>At the cutting edge of industrial and bionanoscience research, investigating the synergistic effects of magnetization and EMHD on flow dynamics at nanolayer interfaces and the bio-thermal responses of nanostructures in micromagnetorotational nanofluids represents a pioneering endeavor. Building upon this novel concept, the present study introduces a theoretical inquiry into the influence of ternary composite nanoparticle on biofluid flow within stenosed carotid arteries. The meticulously simulated flow scenario encompasses a spectrum of physical phenomena, including heat sources, Joule heating, viscous and buoyancy forces. Utilizing the homotopy perturbation method, the research provides rapidly converging series solutions for complex flow equations, illustrating the effects on various hemodynamic profiles. Key findings reveal that together with electromagnetic force and magnetization significantly improve flow velocity by approximately 0.01946% at r <span><math><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>44</mn></mrow></math></span> than without its presence, but slows down around 0.0165% by thermal buoyancy forces in both restricted regions. Enhanced viscous dissipation reduces flow resistance, particularly for blade-shaped nanoparticles, which achieve temperature increases of 0.0366% and 0.1631% in narrowed and dilated segments, respectively. These nanoparticles shape also induce oscillations in heat transfer, whereas platelet-shaped nanolayered particles enhance localized thermal transfer, resulting in heat transfer enhancements of 72.50%, for ternary nanofluids at <span><math><mrow><mi>z</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>8</mn></mrow></math></span>. Magnetization boosts the microrotational dynamics of bio-elements by 0.0116% in the nanoparticle-targeted region of the narrowed segment, with a notable reduction of 3.5574% observed in the tapered section. Furthermore, the microrotation effect minimizes the entropy rates by 0.631% and 3.751% at r <span><math><mrow><mo>=</mo><mn>0</mn><mo>.</mo><mn>8</mn></mrow></math></span> in the respective sections. These insights collectively hold potential for advancing medical technologies based on bioelectromagnetic principles.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"232 ","pages":"Pages 17-49"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004853","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
At the cutting edge of industrial and bionanoscience research, investigating the synergistic effects of magnetization and EMHD on flow dynamics at nanolayer interfaces and the bio-thermal responses of nanostructures in micromagnetorotational nanofluids represents a pioneering endeavor. Building upon this novel concept, the present study introduces a theoretical inquiry into the influence of ternary composite nanoparticle on biofluid flow within stenosed carotid arteries. The meticulously simulated flow scenario encompasses a spectrum of physical phenomena, including heat sources, Joule heating, viscous and buoyancy forces. Utilizing the homotopy perturbation method, the research provides rapidly converging series solutions for complex flow equations, illustrating the effects on various hemodynamic profiles. Key findings reveal that together with electromagnetic force and magnetization significantly improve flow velocity by approximately 0.01946% at r than without its presence, but slows down around 0.0165% by thermal buoyancy forces in both restricted regions. Enhanced viscous dissipation reduces flow resistance, particularly for blade-shaped nanoparticles, which achieve temperature increases of 0.0366% and 0.1631% in narrowed and dilated segments, respectively. These nanoparticles shape also induce oscillations in heat transfer, whereas platelet-shaped nanolayered particles enhance localized thermal transfer, resulting in heat transfer enhancements of 72.50%, for ternary nanofluids at . Magnetization boosts the microrotational dynamics of bio-elements by 0.0116% in the nanoparticle-targeted region of the narrowed segment, with a notable reduction of 3.5574% observed in the tapered section. Furthermore, the microrotation effect minimizes the entropy rates by 0.631% and 3.751% at r in the respective sections. These insights collectively hold potential for advancing medical technologies based on bioelectromagnetic principles.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.