{"title":"Globally exponentially convergent observer for systems evolving on matrix Lie groups","authors":"Soham Shanbhag, Dong Eui Chang","doi":"10.1016/j.matcom.2025.01.013","DOIUrl":null,"url":null,"abstract":"<div><div>The estimate of a system state, arrived at using measurements, is often used in design of state controllers in robotics. These measurements are often biased and contain noise. Many such systems usually evolve on matrix Lie groups. In this paper, we propose a globally exponentially convergent observer for systems evolving on matrix Lie groups with bounded velocity. The design of observers on the Lie group prohibits continuous globally convergent observers, which we sidestep by designing the observer in the ambient Euclidean space of the group and show exponential convergence of the observer to the state of the system. The performance of the observer is shown using an example of the rigid body rotation and translation system evolving on the special Euclidean group. We also compare the proposed observer with an observer present in the literature and show the improvements afforded by our observer.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"232 ","pages":"Pages 475-482"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425000138","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The estimate of a system state, arrived at using measurements, is often used in design of state controllers in robotics. These measurements are often biased and contain noise. Many such systems usually evolve on matrix Lie groups. In this paper, we propose a globally exponentially convergent observer for systems evolving on matrix Lie groups with bounded velocity. The design of observers on the Lie group prohibits continuous globally convergent observers, which we sidestep by designing the observer in the ambient Euclidean space of the group and show exponential convergence of the observer to the state of the system. The performance of the observer is shown using an example of the rigid body rotation and translation system evolving on the special Euclidean group. We also compare the proposed observer with an observer present in the literature and show the improvements afforded by our observer.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.