Jacob E. Lawrence, Madi P. Lawrence, Nathan B. Crane
{"title":"Expanding the print parameter window for continuous line formation in binder jet additive manufacturing through pre-wetting of the powder bed","authors":"Jacob E. Lawrence, Madi P. Lawrence, Nathan B. Crane","doi":"10.1016/j.addma.2025.104693","DOIUrl":null,"url":null,"abstract":"<div><div>Binder Jet (BJ) additive manufacturing creates parts by binding powder particles together with inkjet-printed droplets. BJ shows promise as an industrial process, but poor final part properties often limit applications. Prior work has shown that there is significant powder rearrangement from the kinetic impact of binder droplets that may contribute to the formation of defects in the final parts. This study builds upon previous research by studying the effects of print parameters, including droplet spacing and inter-arrival time, and droplet parameters, including droplet volume, velocity, and satellite formation, on the formation of lines. A new method, using an adhesive film, for extracting single-layer parts is described which allows for study of smaller, more sensitive primitives. The results show that pre-wetting the powder bed expands the feasible design space and allows printing with larger droplet spacings, smaller inter-arrival times, and slower droplet velocities. This enables up to 50 % faster print rates and the potential for reduced powder relocation due to droplet impact. Results from this work can be used to inform the selection of optimal process parameters and the design of new BJ systems to produce higher quality parts.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"100 ","pages":"Article 104693"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425000570","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Binder Jet (BJ) additive manufacturing creates parts by binding powder particles together with inkjet-printed droplets. BJ shows promise as an industrial process, but poor final part properties often limit applications. Prior work has shown that there is significant powder rearrangement from the kinetic impact of binder droplets that may contribute to the formation of defects in the final parts. This study builds upon previous research by studying the effects of print parameters, including droplet spacing and inter-arrival time, and droplet parameters, including droplet volume, velocity, and satellite formation, on the formation of lines. A new method, using an adhesive film, for extracting single-layer parts is described which allows for study of smaller, more sensitive primitives. The results show that pre-wetting the powder bed expands the feasible design space and allows printing with larger droplet spacings, smaller inter-arrival times, and slower droplet velocities. This enables up to 50 % faster print rates and the potential for reduced powder relocation due to droplet impact. Results from this work can be used to inform the selection of optimal process parameters and the design of new BJ systems to produce higher quality parts.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.