Nonspherical humeral arthroplasty increases internal rotation: a biomechanical comparison of the native humeral head to nonspherical and spherical humeral implants

Q4 Medicine Seminars in Arthroplasty Pub Date : 2024-09-10 DOI:10.1053/j.sart.2024.07.014
Kyle Schoell MD , Victor Hung BS , Genevieve Fraipont BA , Michelle H. McGarry MS , G. Russell Huffman MD, MPH , Hafiz Kassam MD , Thay Q. Lee PhD
{"title":"Nonspherical humeral arthroplasty increases internal rotation: a biomechanical comparison of the native humeral head to nonspherical and spherical humeral implants","authors":"Kyle Schoell MD ,&nbsp;Victor Hung BS ,&nbsp;Genevieve Fraipont BA ,&nbsp;Michelle H. McGarry MS ,&nbsp;G. Russell Huffman MD, MPH ,&nbsp;Hafiz Kassam MD ,&nbsp;Thay Q. Lee PhD","doi":"10.1053/j.sart.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Nonspherical humeral head implants more closely resemble native humeral anatomy than spherical components and may better replicate native shoulder range of motion (ROM) and kinematics. The purpose of this study was to compare shoulder ROM and kinematics of a commercially available nonspherical humeral head implant with the native humeral head and a height matched, custom manufactured spherical implant.</div></div><div><h3>Methods</h3><div>Six fresh frozen cadaveric shoulder specimens were used with a custom shoulder testing system. The native shoulder was tested in multiple positions under anatomic muscle loading. Each specimen was tested for ROM and glenohumeral joint kinematics by measuring the humeral head apex and humeral head center (HHC) translation per degree of rotation using a MicroScribe digitizer. Measurements were then repeated after implantation of a spherical and, subsequently, a nonspherical humeral head prothesis.</div></div><div><h3>Results</h3><div>The nonspherical implant had significantly more internal rotation (IR) compared to the spherical implant at 0° abduction (10.6 ± 6.2° more IR, <em>P</em> = .004, 95% confidence interval [CI]: −13.3, 34.5), 30° abduction (5.7 ± 2.8°, <em>P</em> = .009, 95% CI: −12.6, 24.0) and 60° abduction (6.8 ± 2.7°, <em>P</em> = .002, 95% CI: −8.3, 22.1) in the scapular plane, and 60° abduction (6.9 ± 2.0°, <em>P</em> = .031, 95% CI: −12, 25.6) in the coronal plane. The nonspherical implant had more IR than the native head at 60° of abduction in the scapular plane (7.0 ± 2.2° <em>P</em> = .002, 95% CI: −10.3, 24.3). The spherical head had less IR than the native head at 0° abduction (7.2 ± 4.8°, <em>P</em> = .031, 95% CI: 32.5, 18.1). There were no differences in humeral head apex translation per degree of rotation noted between the spherical implant or nonspherical implant and the native shoulder. The nonspherical head had less HHC translation than the native shoulder at 30° abduction in the forward flexion plane (<em>P</em> = .007); otherwise, there were no statistically significant differences in HHC translation between the native shoulder, the spherical head, and the nonspherical head. There was no significant difference observed between the average difference in anterior-posterior and superior-inferior radius of curvature of the nonspherical implants (2.0 ± 0.7 mm) and the native humeral heads (1.9 ± 1.3 mm) [<em>P</em> = .926].</div></div><div><h3>Conclusion</h3><div>The results of this biomechanical study suggest that the commercially available nonspherical humeral head has improved IR when compared to a custom, height controlled spherical implant and offers ROM and kinematics similar to the native humeral head in a cadaveric model.</div></div>","PeriodicalId":39885,"journal":{"name":"Seminars in Arthroplasty","volume":"35 1","pages":"Pages 31-41"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Arthroplasty","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1045452724000956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Nonspherical humeral head implants more closely resemble native humeral anatomy than spherical components and may better replicate native shoulder range of motion (ROM) and kinematics. The purpose of this study was to compare shoulder ROM and kinematics of a commercially available nonspherical humeral head implant with the native humeral head and a height matched, custom manufactured spherical implant.

Methods

Six fresh frozen cadaveric shoulder specimens were used with a custom shoulder testing system. The native shoulder was tested in multiple positions under anatomic muscle loading. Each specimen was tested for ROM and glenohumeral joint kinematics by measuring the humeral head apex and humeral head center (HHC) translation per degree of rotation using a MicroScribe digitizer. Measurements were then repeated after implantation of a spherical and, subsequently, a nonspherical humeral head prothesis.

Results

The nonspherical implant had significantly more internal rotation (IR) compared to the spherical implant at 0° abduction (10.6 ± 6.2° more IR, P = .004, 95% confidence interval [CI]: −13.3, 34.5), 30° abduction (5.7 ± 2.8°, P = .009, 95% CI: −12.6, 24.0) and 60° abduction (6.8 ± 2.7°, P = .002, 95% CI: −8.3, 22.1) in the scapular plane, and 60° abduction (6.9 ± 2.0°, P = .031, 95% CI: −12, 25.6) in the coronal plane. The nonspherical implant had more IR than the native head at 60° of abduction in the scapular plane (7.0 ± 2.2° P = .002, 95% CI: −10.3, 24.3). The spherical head had less IR than the native head at 0° abduction (7.2 ± 4.8°, P = .031, 95% CI: 32.5, 18.1). There were no differences in humeral head apex translation per degree of rotation noted between the spherical implant or nonspherical implant and the native shoulder. The nonspherical head had less HHC translation than the native shoulder at 30° abduction in the forward flexion plane (P = .007); otherwise, there were no statistically significant differences in HHC translation between the native shoulder, the spherical head, and the nonspherical head. There was no significant difference observed between the average difference in anterior-posterior and superior-inferior radius of curvature of the nonspherical implants (2.0 ± 0.7 mm) and the native humeral heads (1.9 ± 1.3 mm) [P = .926].

Conclusion

The results of this biomechanical study suggest that the commercially available nonspherical humeral head has improved IR when compared to a custom, height controlled spherical implant and offers ROM and kinematics similar to the native humeral head in a cadaveric model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Seminars in Arthroplasty
Seminars in Arthroplasty Medicine-Surgery
CiteScore
1.00
自引率
0.00%
发文量
104
期刊介绍: Each issue of Seminars in Arthroplasty provides a comprehensive, current overview of a single topic in arthroplasty. The journal addresses orthopedic surgeons, providing authoritative reviews with emphasis on new developments relevant to their practice.
期刊最新文献
Table of Contents Editorial Board Thank you to our reviewers for 2024 Interest in reverse total shoulder arthroplasty is increasing! An analysis of publication frequency and Google Trends Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1