A review of road 3D modeling based on light detection and ranging point clouds

Bin Yu, Yuchen Wang, Qihang Chen, Xiaoyang Chen, Yuqin Zhang, Kaiyue Luan, Xiaole Ren
{"title":"A review of road 3D modeling based on light detection and ranging point clouds","authors":"Bin Yu,&nbsp;Yuchen Wang,&nbsp;Qihang Chen,&nbsp;Xiaoyang Chen,&nbsp;Yuqin Zhang,&nbsp;Kaiyue Luan,&nbsp;Xiaole Ren","doi":"10.1016/j.jreng.2024.04.009","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing development of accurate and efficient road three-dimensional (3D) modeling presents great opportunities to improve the data exchange and integration of building information modeling (BIM) models. 3D modeling of road scenes is crucial for reference in asset management, construction, and maintenance. Light detection and ranging (LiDAR) technology is increasingly employed to generate high-quality point clouds for road inventory. In this paper, we specifically investigate the use of LiDAR data for road 3D modeling. The purpose of this review is to provide references about the existing work on the road 3D modeling based on LiDAR point clouds, critically discuss them, and provide challenges for further study. Besides, we introduce modeling standards for roads and discuss the components, types, and distinctions of various LiDAR measurement systems. Then, we review state-of-the-art methods and provide a detailed examination of road segmentation and feature extraction. Furthermore, we systematically introduce point cloud-based 3D modeling methods, namely, parametric modeling and surface reconstruction. Parameters and rules are used to define model components based on geometric and non-geometric information, whereas surface modeling is conducted through individual faces within its geometry. Finally, we discuss and summarize future research directions in this field. This review can assist researchers in enhancing existing approaches and developing new techniques for road modeling based on LiDAR point clouds.</div></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":"4 4","pages":"Pages 386-398"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Road Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209704982400043X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing development of accurate and efficient road three-dimensional (3D) modeling presents great opportunities to improve the data exchange and integration of building information modeling (BIM) models. 3D modeling of road scenes is crucial for reference in asset management, construction, and maintenance. Light detection and ranging (LiDAR) technology is increasingly employed to generate high-quality point clouds for road inventory. In this paper, we specifically investigate the use of LiDAR data for road 3D modeling. The purpose of this review is to provide references about the existing work on the road 3D modeling based on LiDAR point clouds, critically discuss them, and provide challenges for further study. Besides, we introduce modeling standards for roads and discuss the components, types, and distinctions of various LiDAR measurement systems. Then, we review state-of-the-art methods and provide a detailed examination of road segmentation and feature extraction. Furthermore, we systematically introduce point cloud-based 3D modeling methods, namely, parametric modeling and surface reconstruction. Parameters and rules are used to define model components based on geometric and non-geometric information, whereas surface modeling is conducted through individual faces within its geometry. Finally, we discuss and summarize future research directions in this field. This review can assist researchers in enhancing existing approaches and developing new techniques for road modeling based on LiDAR point clouds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
期刊最新文献
Recycling of waste E-cigarette butts as engineered pelletized fibres for sustainable stone mastic asphalt Investigation of indoor and field tests on asphalt pavement with inverted asphalt layers based on the vertical vibration compaction method Local calibration of JPCP transverse cracking and IRI models using maximum likelihood estimation Review on the properties and mechanisms of asphalt modified with bio-oil and biochar Review and prospect of four-point bending fatigue test of asphalt mixture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1