Crack Formation and Pathways in Nitinol Biomedical Devices

A.R. Pelton , M.E. Launey , W.S. LePage , M.R. Mitchell , J. Ulmer
{"title":"Crack Formation and Pathways in Nitinol Biomedical Devices","authors":"A.R. Pelton ,&nbsp;M.E. Launey ,&nbsp;W.S. LePage ,&nbsp;M.R. Mitchell ,&nbsp;J. Ulmer","doi":"10.1016/j.prostr.2024.11.076","DOIUrl":null,"url":null,"abstract":"<div><div>Nitinol is a near equiatomic intermetallic that is increasingly being used in medical devices due to its unique shape memory behaviors of both superelasticity and shape memory effect, as well as its ability to be heat set into complex shapes. The metallurgical characteristics and properties rely on a diffusionless solid-state phase transformation between cubic Austenite and monoclinic Martensite. Such implanted Nitinol devices may experience millions to billions of in vivo cyclic deformations; these cycles may result in microstructural damage accumulation with the result of functional fatigue (e.g., change in strain recovery, transformation temperature, displacements and/or forces) and/or structural fatigue (e.g., cracks and fractures). Consequently, lifetime predictions of components are critical for the design and optimization of devices manufactured from Nitinol. Although most medical device companies conduct total life fatigue tests on their devices, damage-tolerant fatigue assessment is also important in order to understand safe-use conditions. This paper reviews the literature on investigations of crack formation and propagation in Nitinol materials under a variety of conditions.</div></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":"66 ","pages":"Pages 265-281"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321624011302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nitinol is a near equiatomic intermetallic that is increasingly being used in medical devices due to its unique shape memory behaviors of both superelasticity and shape memory effect, as well as its ability to be heat set into complex shapes. The metallurgical characteristics and properties rely on a diffusionless solid-state phase transformation between cubic Austenite and monoclinic Martensite. Such implanted Nitinol devices may experience millions to billions of in vivo cyclic deformations; these cycles may result in microstructural damage accumulation with the result of functional fatigue (e.g., change in strain recovery, transformation temperature, displacements and/or forces) and/or structural fatigue (e.g., cracks and fractures). Consequently, lifetime predictions of components are critical for the design and optimization of devices manufactured from Nitinol. Although most medical device companies conduct total life fatigue tests on their devices, damage-tolerant fatigue assessment is also important in order to understand safe-use conditions. This paper reviews the literature on investigations of crack formation and propagation in Nitinol materials under a variety of conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Editorial Editorial Preface Editorial Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1