Unveiling the potential gain in life expectancy by improving air quality for ambient ozone in eastern China

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment Pub Date : 2024-12-25 DOI:10.1016/j.atmosenv.2024.121020
Jingjing Zhang , Cheng Wang , Yixiang Wang , Minjin Peng , Jiajun Shen , Yalin Zhang , Yuxi Tan , Hao Zheng , Yunquan Zhang
{"title":"Unveiling the potential gain in life expectancy by improving air quality for ambient ozone in eastern China","authors":"Jingjing Zhang ,&nbsp;Cheng Wang ,&nbsp;Yixiang Wang ,&nbsp;Minjin Peng ,&nbsp;Jiajun Shen ,&nbsp;Yalin Zhang ,&nbsp;Yuxi Tan ,&nbsp;Hao Zheng ,&nbsp;Yunquan Zhang","doi":"10.1016/j.atmosenv.2024.121020","DOIUrl":null,"url":null,"abstract":"<div><div>Short-term ambient ozone (O<sub>3</sub>) exposure is widely linked to heightened mortality risk, while its effects on life expectancy remain largely unstudied. This multi-city time-series study aims to assess the potential gain in life expectancy (PGLE) from reduced O<sub>3</sub> concentrations in eastern China. Generalized additive model was applied to quantify city-specific effects of short-term O<sub>3</sub> exposure on years of life lost (YLL), and associations at the provincial level were pooled through random-effects meta-analysis. By assuming that daily O<sub>3</sub> level met the World Health Organization air quality guideline 2021 (WHO AQG 2021) and interim target 2 (IT-2), we estimated PGLE and attributable fraction (AF) of YLL on the basis of counterfactual analysis. Approximately 1.9 million nonaccidental deaths were included in the analysis. We observed a pooled estimate of 0.44% (95% confidence interval: 0.36%, 0.52%) in excess risk and 0.56 (0.39, 0.72) years increase in YLL (per million population) for each 10-μg/m<sup>3</sup> rise in 2-day moving average O<sub>3</sub>. By reducing daily O<sub>3</sub> concentrations to WHO IT-2 and WHO AQG 2021, we estimated that 0.13 million (AF = 0.56%) and 0.22 million (AF = 0.97%) years of YLL could be avoided per million population, equivalent to the PGLE of 0.054 (0.038, 0.070) years and 0.094 (0.066, 0.121) years for each death, respectively. This study provided province-wide evidence for prolonged population life expectancy by achieving cleaner air quality for ambient O<sub>3</sub> in eastern China, underscoring the great public health significance through implementing more stringent standards.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"344 ","pages":"Article 121020"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024006952","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Short-term ambient ozone (O3) exposure is widely linked to heightened mortality risk, while its effects on life expectancy remain largely unstudied. This multi-city time-series study aims to assess the potential gain in life expectancy (PGLE) from reduced O3 concentrations in eastern China. Generalized additive model was applied to quantify city-specific effects of short-term O3 exposure on years of life lost (YLL), and associations at the provincial level were pooled through random-effects meta-analysis. By assuming that daily O3 level met the World Health Organization air quality guideline 2021 (WHO AQG 2021) and interim target 2 (IT-2), we estimated PGLE and attributable fraction (AF) of YLL on the basis of counterfactual analysis. Approximately 1.9 million nonaccidental deaths were included in the analysis. We observed a pooled estimate of 0.44% (95% confidence interval: 0.36%, 0.52%) in excess risk and 0.56 (0.39, 0.72) years increase in YLL (per million population) for each 10-μg/m3 rise in 2-day moving average O3. By reducing daily O3 concentrations to WHO IT-2 and WHO AQG 2021, we estimated that 0.13 million (AF = 0.56%) and 0.22 million (AF = 0.97%) years of YLL could be avoided per million population, equivalent to the PGLE of 0.054 (0.038, 0.070) years and 0.094 (0.066, 0.121) years for each death, respectively. This study provided province-wide evidence for prolonged population life expectancy by achieving cleaner air quality for ambient O3 in eastern China, underscoring the great public health significance through implementing more stringent standards.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
期刊最新文献
Analysis of contrasting aerosol indirect effects in liquid water clouds over the northern part of Arabian Sea Dosimetry simulations of ultrafine particles deposition to the human respiratory tract and transport to the olfactory region for female receptors Revealing the chemical composition and sources of carbonaceous aerosols in PM2.5: Insights from the Omicron-22 lockdown in Shanghai Deep learning calibration model for PurpleAir PM2.5 measurements: Comprehensive Investigation of the PurpleAir network Unexpected changes in occurrence and sources of chromophoric dissolved organic matter in PM2.5 driven by the clean air action over Xi'an, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1