Performance evaluation of different cloud products for estimating surface solar radiation

IF 3.7 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment Pub Date : 2025-01-03 DOI:10.1016/j.atmosenv.2024.121023
Dongyue Liu , Yunbo Lu , Lunche Wang , Ming Zhang , Wenmin Qin , Lan Feng , Zhitong Wang
{"title":"Performance evaluation of different cloud products for estimating surface solar radiation","authors":"Dongyue Liu ,&nbsp;Yunbo Lu ,&nbsp;Lunche Wang ,&nbsp;Ming Zhang ,&nbsp;Wenmin Qin ,&nbsp;Lan Feng ,&nbsp;Zhitong Wang","doi":"10.1016/j.atmosenv.2024.121023","DOIUrl":null,"url":null,"abstract":"<div><div>The presence and variability of clouds have a significant effect on surface solar radiation (SSR). The range of cloud products currently available for SSR estimation vary in spatial and temporal resolution and accuracy. Since the effect of different cloud products on the accuracy of SSR estimation has not been adequately quantified in existing studies, this study evaluates the performance of four cloud products (Himawari-8, ISCCP, CERES, and MERRA-2) in estimating SSR and analyzes them in comparison with the MODIS cloud product. The accuracy of SSR estimation of the four cloud products is verified using measured data from BSRN and CERN ground-based observatories. The results show that Himawari-8 has the best performance with R-squared (R<sup>2</sup>) values of 0.94 and 0.74 and root mean square errors (RMSE) of 71.03 W/m<sup>2</sup> and 141.36 W/m<sup>2</sup> on the sub-daily scales at the BSRN and CERN sites, respectively. CERES and ISCCP have similar performances, but they vary by site and month. While MERRA-2 grossly underestimates SSR, probably related to misclassification of clear skies as cloudy and overestimation of cloud optical thickness under cloudy conditions. Compared to MODIS, Himawari-8 provides better agreement with MODIS results in cloud classification and cloud phase identification, while CERES provides better agreement with MODIS results in cloud optical thickness. Overall, Himawari-8 performs best in SSR estimation. This comprehensive assessment not only highlights the crucial role of cloud observations on SSR estimations but also details the strengths and weaknesses of each cloud product in enhancing the understanding of solar radiation dynamics.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"344 ","pages":"Article 121023"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024006988","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The presence and variability of clouds have a significant effect on surface solar radiation (SSR). The range of cloud products currently available for SSR estimation vary in spatial and temporal resolution and accuracy. Since the effect of different cloud products on the accuracy of SSR estimation has not been adequately quantified in existing studies, this study evaluates the performance of four cloud products (Himawari-8, ISCCP, CERES, and MERRA-2) in estimating SSR and analyzes them in comparison with the MODIS cloud product. The accuracy of SSR estimation of the four cloud products is verified using measured data from BSRN and CERN ground-based observatories. The results show that Himawari-8 has the best performance with R-squared (R2) values of 0.94 and 0.74 and root mean square errors (RMSE) of 71.03 W/m2 and 141.36 W/m2 on the sub-daily scales at the BSRN and CERN sites, respectively. CERES and ISCCP have similar performances, but they vary by site and month. While MERRA-2 grossly underestimates SSR, probably related to misclassification of clear skies as cloudy and overestimation of cloud optical thickness under cloudy conditions. Compared to MODIS, Himawari-8 provides better agreement with MODIS results in cloud classification and cloud phase identification, while CERES provides better agreement with MODIS results in cloud optical thickness. Overall, Himawari-8 performs best in SSR estimation. This comprehensive assessment not only highlights the crucial role of cloud observations on SSR estimations but also details the strengths and weaknesses of each cloud product in enhancing the understanding of solar radiation dynamics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同云产品估算地表太阳辐射的性能评价
云的存在和变率对地表太阳辐射有显著影响。目前可用于SSR估算的云产品范围在时空分辨率和精度上各不相同。由于现有研究未充分量化不同云产品对SSR估算精度的影响,本研究评估了Himawari-8、ISCCP、CERES和MERRA-2四种云产品在SSR估算中的性能,并与MODIS云产品进行对比分析。利用BSRN和CERN地面观测数据验证了四种云产品SSR估计的准确性。结果表明,Himawari-8在BSRN和CERN站点的亚日尺度上表现最佳,R2分别为0.94和0.74,均方根误差(RMSE)分别为71.03 W/m2和141.36 W/m2。CERES和ISCCP具有相似的性能,但它们因地点和月份而异。而MERRA-2则严重低估了SSR,这可能与将晴空误判为多云以及在多云条件下高估云光学厚度有关。与MODIS相比,Himawari-8在云分类和云相位识别方面与MODIS结果吻合较好,而CERES在云光学厚度方面与MODIS结果吻合较好。总体而言,Himawari-8在SSR估计中表现最好。这项综合评估不仅强调了云观测对SSR估算的重要作用,而且详细介绍了每种云产品的优缺点,以增强对太阳辐射动力学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
期刊最新文献
Editorial Board Ozone prediction using a hybrid model incorporating feature selection and extreme sample enhancement in North China Chlorine–mediated enhancement of coastal ozone pollution under long–range transport in eastern China Bioaccessibility and transformation of PM2.5 organics and microbiota in simulated lung fluids: Implications for fluid-specific respiratory risks Pollution characteristics of PM2.5 and PM1.0 at urban and background sites in South Korea: Focusing on health risks of PAHs and heavy metals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1