Global comparative basin hypsometric analysis of Earth and Mars: Implications for early Mars climate

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2025-01-21 DOI:10.1016/j.epsl.2025.119226
J. Fang , W. Luo , A.D. Howard , R.A. Craddock , E.A. Oliveira , R.S. Pires
{"title":"Global comparative basin hypsometric analysis of Earth and Mars: Implications for early Mars climate","authors":"J. Fang ,&nbsp;W. Luo ,&nbsp;A.D. Howard ,&nbsp;R.A. Craddock ,&nbsp;E.A. Oliveira ,&nbsp;R.S. Pires","doi":"10.1016/j.epsl.2025.119226","DOIUrl":null,"url":null,"abstract":"<div><div>While there is a consensus that water played at least some role in the formation of various Martian landforms, including valley networks (VNs), the specific mechanisms and climate conditions are still debated. Basin hypsometric curves, reflecting elevation distributions, offer insights into past processes and climates. Our study presents a global-scale comparison of basin hypsometry on Mars, Earth, the Moon, artificial fractal surfaces, and computer simulated landforms. Results indicate Martian VN formation likely occurred under a climate more arid than hyper-arid Earth, or under more humid periods that were short-lived. Differences in hypsometric attributes between Mars and the Moon suggest VN formation on Mars involved precipitation-driven water flow. Additionally, impact cratering significantly influenced Martian surface conditions, potentially disrupting fluvial erosion processes. This comparative analysis sheds light on the complex interplay of climatic factors and geological processes in Martian landscape evolution.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"653 ","pages":"Article 119226"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25000251","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

While there is a consensus that water played at least some role in the formation of various Martian landforms, including valley networks (VNs), the specific mechanisms and climate conditions are still debated. Basin hypsometric curves, reflecting elevation distributions, offer insights into past processes and climates. Our study presents a global-scale comparison of basin hypsometry on Mars, Earth, the Moon, artificial fractal surfaces, and computer simulated landforms. Results indicate Martian VN formation likely occurred under a climate more arid than hyper-arid Earth, or under more humid periods that were short-lived. Differences in hypsometric attributes between Mars and the Moon suggest VN formation on Mars involved precipitation-driven water flow. Additionally, impact cratering significantly influenced Martian surface conditions, potentially disrupting fluvial erosion processes. This comparative analysis sheds light on the complex interplay of climatic factors and geological processes in Martian landscape evolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Unraveling the key factors controlling active faulting in Tertiary and Quaternary sequences Editorial Board The first Al-Cu-alloy-bearing unmelted micrometeorite suggests contributions from the disrupted ureilite protoplanet Eastern equatorial Pacific paleo-productivity and carbon cycling during the late Pleistocene Volatile loss history of the Moon from the copper isotopic compositions of mare basalts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1