Impacts of microbial interactions on underground hydrogen storage in porous media: A comprehensive review of experimental, numerical, and field studies
Lin Wu , Zheng-Meng Hou , Zhi-Feng Luo , Yan-Li Fang , Liang-Chao Huang , Xu-Ning Wu , Qian-Jun Chen , Qi-Chen Wang
{"title":"Impacts of microbial interactions on underground hydrogen storage in porous media: A comprehensive review of experimental, numerical, and field studies","authors":"Lin Wu , Zheng-Meng Hou , Zhi-Feng Luo , Yan-Li Fang , Liang-Chao Huang , Xu-Ning Wu , Qian-Jun Chen , Qi-Chen Wang","doi":"10.1016/j.petsci.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>Amidst the rapid development of renewable energy, the intermittency and instability of energy supply pose severe challenges and impose higher requirements on energy storage systems. Among the various energy storage technologies, the coupled approach of power-to-hydrogen (H<sub>2</sub>) and underground H<sub>2</sub> storage (UHS) offers advantages such as extended storage duration and large-scale capacity, making it highly promising for future development. However, during UHS, particularly in porous media, microbial metabolic processes such as methanogenesis, acetogenesis, and sulfate reduction may lead to H<sub>2</sub> consumption and the production of byproducts. These microbial activities can impact the efficiency and safety of UHS both positively and negatively. Therefore, this paper provides a comprehensive review of experimental, numerical, and field studies on microbial interactions in UHS within porous media, aiming to capture research progress and elucidate microbial effects. It begins by outlining the primary types of UHS and the key microbial metabolic processes involved. Subsequently, the paper introduces the experimental approaches for investigating gas–water–rock–microbe interactions and interfacial properties, the models and simulators used in numerical studies, and the procedures implemented in field trials. Furthermore, it analyzes and discusses microbial interactions and their positive and negative impacts on UHS in porous media, focusing on aspects such as H<sub>2</sub> consumption, H<sub>2</sub> flow, and storage safety. Based on these insights, recommendations for site selection, engineering operations, and on-site monitoring of UHS, as well as potential future research directions, are provided.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"21 6","pages":"Pages 4067-4099"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624002395","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Amidst the rapid development of renewable energy, the intermittency and instability of energy supply pose severe challenges and impose higher requirements on energy storage systems. Among the various energy storage technologies, the coupled approach of power-to-hydrogen (H2) and underground H2 storage (UHS) offers advantages such as extended storage duration and large-scale capacity, making it highly promising for future development. However, during UHS, particularly in porous media, microbial metabolic processes such as methanogenesis, acetogenesis, and sulfate reduction may lead to H2 consumption and the production of byproducts. These microbial activities can impact the efficiency and safety of UHS both positively and negatively. Therefore, this paper provides a comprehensive review of experimental, numerical, and field studies on microbial interactions in UHS within porous media, aiming to capture research progress and elucidate microbial effects. It begins by outlining the primary types of UHS and the key microbial metabolic processes involved. Subsequently, the paper introduces the experimental approaches for investigating gas–water–rock–microbe interactions and interfacial properties, the models and simulators used in numerical studies, and the procedures implemented in field trials. Furthermore, it analyzes and discusses microbial interactions and their positive and negative impacts on UHS in porous media, focusing on aspects such as H2 consumption, H2 flow, and storage safety. Based on these insights, recommendations for site selection, engineering operations, and on-site monitoring of UHS, as well as potential future research directions, are provided.
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.