Survey of neurocognitive disorder detection methods based on speech, visual, and virtual reality technologies

Q1 Computer Science Virtual Reality Intelligent Hardware Pub Date : 2024-12-01 DOI:10.1016/j.vrih.2024.08.001
Tian ZHENG , Xinheng WANG , Xiaolan PENG , Ning SU , Tianyi XU , Xurong XIE , Jin HUANG , Lun XIE , Feng TIAN
{"title":"Survey of neurocognitive disorder detection methods based on speech, visual, and virtual reality technologies","authors":"Tian ZHENG ,&nbsp;Xinheng WANG ,&nbsp;Xiaolan PENG ,&nbsp;Ning SU ,&nbsp;Tianyi XU ,&nbsp;Xurong XIE ,&nbsp;Jin HUANG ,&nbsp;Lun XIE ,&nbsp;Feng TIAN","doi":"10.1016/j.vrih.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>The global trend of population aging poses significant challenges to society and healthcare systems, particularly because of neurocognitive disorders (NCDs) such as Parkinson's disease (PD) and Alzheimer's disease (AD). In this context, artificial intelligence techniques have demonstrated promising potential for the objective assessment and detection of NCDs. Multimodal contactless screening technologies, such as speech-language processing, computer vision, and virtual reality, offer efficient and convenient methods for disease diagnosis and progression tracking. This paper systematically reviews the specific methods and applications of these technologies in the detection of NCDs using data collection paradigms, feature extraction, and modeling approaches. Additionally, the potential applications and future prospects of these technologies for the detection of cognitive and motor disorders are explored. By providing a comprehensive summary and refinement of the extant theories, methodologies, and applications, this study aims to facilitate an in-depth understanding of these technologies for researchers, both within and outside the field. To the best of our knowledge, this is the first survey to cover the use of speech-language processing, computer vision, and virtual reality technologies for the detection of NSDs.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 6","pages":"Pages 421-472"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The global trend of population aging poses significant challenges to society and healthcare systems, particularly because of neurocognitive disorders (NCDs) such as Parkinson's disease (PD) and Alzheimer's disease (AD). In this context, artificial intelligence techniques have demonstrated promising potential for the objective assessment and detection of NCDs. Multimodal contactless screening technologies, such as speech-language processing, computer vision, and virtual reality, offer efficient and convenient methods for disease diagnosis and progression tracking. This paper systematically reviews the specific methods and applications of these technologies in the detection of NCDs using data collection paradigms, feature extraction, and modeling approaches. Additionally, the potential applications and future prospects of these technologies for the detection of cognitive and motor disorders are explored. By providing a comprehensive summary and refinement of the extant theories, methodologies, and applications, this study aims to facilitate an in-depth understanding of these technologies for researchers, both within and outside the field. To the best of our knowledge, this is the first survey to cover the use of speech-language processing, computer vision, and virtual reality technologies for the detection of NSDs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
Survey of neurocognitive disorder detection methods based on speech, visual, and virtual reality technologies MatStick: Changing the material sensation of objects upon impact Previs-Real:Interactive virtual previsualization system for news shooting rehearsal and evaluation Automatic piano performance interaction system based on greedy algorithm for dexterous manipulator InputJump: Augmented reality-facilitated cross-device input fusion based on spatial and semantic information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1