Survey of neurocognitive disorder detection methods based on speech, visual, and virtual reality technologies

Q1 Computer Science Virtual Reality Intelligent Hardware Pub Date : 2024-12-01 DOI:10.1016/j.vrih.2024.08.001
Tian ZHENG , Xinheng WANG , Xiaolan PENG , Ning SU , Tianyi XU , Xurong XIE , Jin HUANG , Lun XIE , Feng TIAN
{"title":"Survey of neurocognitive disorder detection methods based on speech, visual, and virtual reality technologies","authors":"Tian ZHENG ,&nbsp;Xinheng WANG ,&nbsp;Xiaolan PENG ,&nbsp;Ning SU ,&nbsp;Tianyi XU ,&nbsp;Xurong XIE ,&nbsp;Jin HUANG ,&nbsp;Lun XIE ,&nbsp;Feng TIAN","doi":"10.1016/j.vrih.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>The global trend of population aging poses significant challenges to society and healthcare systems, particularly because of neurocognitive disorders (NCDs) such as Parkinson's disease (PD) and Alzheimer's disease (AD). In this context, artificial intelligence techniques have demonstrated promising potential for the objective assessment and detection of NCDs. Multimodal contactless screening technologies, such as speech-language processing, computer vision, and virtual reality, offer efficient and convenient methods for disease diagnosis and progression tracking. This paper systematically reviews the specific methods and applications of these technologies in the detection of NCDs using data collection paradigms, feature extraction, and modeling approaches. Additionally, the potential applications and future prospects of these technologies for the detection of cognitive and motor disorders are explored. By providing a comprehensive summary and refinement of the extant theories, methodologies, and applications, this study aims to facilitate an in-depth understanding of these technologies for researchers, both within and outside the field. To the best of our knowledge, this is the first survey to cover the use of speech-language processing, computer vision, and virtual reality technologies for the detection of NSDs.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 6","pages":"Pages 421-472"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The global trend of population aging poses significant challenges to society and healthcare systems, particularly because of neurocognitive disorders (NCDs) such as Parkinson's disease (PD) and Alzheimer's disease (AD). In this context, artificial intelligence techniques have demonstrated promising potential for the objective assessment and detection of NCDs. Multimodal contactless screening technologies, such as speech-language processing, computer vision, and virtual reality, offer efficient and convenient methods for disease diagnosis and progression tracking. This paper systematically reviews the specific methods and applications of these technologies in the detection of NCDs using data collection paradigms, feature extraction, and modeling approaches. Additionally, the potential applications and future prospects of these technologies for the detection of cognitive and motor disorders are explored. By providing a comprehensive summary and refinement of the extant theories, methodologies, and applications, this study aims to facilitate an in-depth understanding of these technologies for researchers, both within and outside the field. To the best of our knowledge, this is the first survey to cover the use of speech-language processing, computer vision, and virtual reality technologies for the detection of NSDs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语音、视觉和虚拟现实技术的神经认知障碍检测方法综述
全球人口老龄化趋势给社会和卫生保健系统带来了重大挑战,特别是因为神经认知障碍(ncd),如帕金森病(PD)和阿尔茨海默病(AD)。在这方面,人工智能技术在客观评估和检测非传染性疾病方面显示出了巨大的潜力。语音语言处理、计算机视觉和虚拟现实等多模式非接触式筛查技术为疾病诊断和进展跟踪提供了高效便捷的方法。本文系统地回顾了这些技术在非传染性疾病检测中的具体方法和应用,包括数据收集范例、特征提取和建模方法。此外,还探讨了这些技术在认知和运动障碍检测中的潜在应用和未来前景。通过对现有的理论、方法和应用进行全面的总结和完善,本研究旨在促进该领域内外的研究人员对这些技术的深入了解。据我们所知,这是第一次涉及使用语音语言处理、计算机视觉和虚拟现实技术来检测nsd的调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
Framework for adaptive multimodal serious games for early intervention of autistic children Urgent needs, opportunities and challenges of virtual reality in healthcare and medicine in the era of large language models Effect of prior gaming experience on cybersickness symptoms in a virtual reality environment Efficient VR rendering: Survey on foveated, stereo, cloud, and low-power rendering techniques Vibrotactile pattern recognition:Influence of interstimulus intervals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1