Che Qu , Shaocong Wang , Chao Zhou , Tongchen Zhao , Rui Guo , Cheng Wa Wong , Chi Deng , Bin Ji , Yuhui Wen , Yuanchun Shi , Yong-Jin Liu
{"title":"Previs-Real:Interactive virtual previsualization system for news shooting rehearsal and evaluation","authors":"Che Qu , Shaocong Wang , Chao Zhou , Tongchen Zhao , Rui Guo , Cheng Wa Wong , Chi Deng , Bin Ji , Yuhui Wen , Yuanchun Shi , Yong-Jin Liu","doi":"10.1016/j.vrih.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>In the demanding field of live news broadcasting, the intricate studio production procedures and tight schedules pose significant challenges for physical rehearsals by cameramen. This paper explores the design and implementation of a lightweight virtual news previsualization system, leveraging virtual production technology and interaction design methods to address the lack of fidelity in presentations and manipulations, and the quantitative feedback of rehearsal effects in previous virtual approaches.</div></div><div><h3>Methods</h3><div>Our system, Previs-Real, is informed by user investigation with professional cameramen and studio technicians, and adheres to principles of high fidelity, accurate replication of actual hardware operations, and real-time feedback on rehearsal results. The system's software and hardware development are implemented based on Unreal Engine and accompanying toolsets, incorporating cutting-edge modeling and camera calibration methods.</div></div><div><h3>Results</h3><div>We validated Previs-Real through a user study, demonstrating superior performance in previsualization shooting tasks using the virtual system compared to traditional camera setups. The findings, supported by both objective performance metrics and subjective responses, underline Previs-Real's effectiveness and potential in transforming news broadcasting rehearsals.</div></div><div><h3>Conclusions</h3><div>Previs-Real eliminates the requirement for complex equipment interconnections and team coordination inherent in a physical studio by implementing methodologies complying the above principles, objectively resulting in a lightweight design of applicable version of virtual news previsualization system. It offers a novel solution to the challenges in news studio previsualization by focusing on key operational features rather than full environment replication. This design approach is equally effective in the process of designing lightweight systems in other fields.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 6","pages":"Pages 527-549"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579624000652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Background
In the demanding field of live news broadcasting, the intricate studio production procedures and tight schedules pose significant challenges for physical rehearsals by cameramen. This paper explores the design and implementation of a lightweight virtual news previsualization system, leveraging virtual production technology and interaction design methods to address the lack of fidelity in presentations and manipulations, and the quantitative feedback of rehearsal effects in previous virtual approaches.
Methods
Our system, Previs-Real, is informed by user investigation with professional cameramen and studio technicians, and adheres to principles of high fidelity, accurate replication of actual hardware operations, and real-time feedback on rehearsal results. The system's software and hardware development are implemented based on Unreal Engine and accompanying toolsets, incorporating cutting-edge modeling and camera calibration methods.
Results
We validated Previs-Real through a user study, demonstrating superior performance in previsualization shooting tasks using the virtual system compared to traditional camera setups. The findings, supported by both objective performance metrics and subjective responses, underline Previs-Real's effectiveness and potential in transforming news broadcasting rehearsals.
Conclusions
Previs-Real eliminates the requirement for complex equipment interconnections and team coordination inherent in a physical studio by implementing methodologies complying the above principles, objectively resulting in a lightweight design of applicable version of virtual news previsualization system. It offers a novel solution to the challenges in news studio previsualization by focusing on key operational features rather than full environment replication. This design approach is equally effective in the process of designing lightweight systems in other fields.