Loris Belcastro , Jesus Carretero , Domenico Talia
{"title":"Edge-cloud solutions for big data analysis and distributed machine learning - 2","authors":"Loris Belcastro , Jesus Carretero , Domenico Talia","doi":"10.1016/j.future.2025.107745","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, edge-cloud solutions have gained widespread adoption for efficiently collecting and analyzing IoT-generated data across various domains like urban mobility, healthcare, and smart cities. These solutions integrate resources from edge to cloud to support real-time processing and analysis tasks, reducing latency and network congestion. Big data analysis within this paradigm involves sophisticated techniques for distributed data processing, enabling applications such as predictive maintenance and smart grid management. Nevertheless, carrying out big data analysis within the edge-cloud presents several challenges, including data privacy and security, interoperability, scalability, and energy efficiency. Addressing these challenges is imperative for providing efficient and scalable solutions for data-intensive applications like federated learning, social data analysis, smart city services, and text mining. The special issue concludes with 27 scientific papers, divided into two parts for a streamlined editorial process. This editorial, as part two, presents 12 rigorously peer-reviewed papers, complementing the 15 papers covered in the previous editorial.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"167 ","pages":"Article 107745"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000408","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, edge-cloud solutions have gained widespread adoption for efficiently collecting and analyzing IoT-generated data across various domains like urban mobility, healthcare, and smart cities. These solutions integrate resources from edge to cloud to support real-time processing and analysis tasks, reducing latency and network congestion. Big data analysis within this paradigm involves sophisticated techniques for distributed data processing, enabling applications such as predictive maintenance and smart grid management. Nevertheless, carrying out big data analysis within the edge-cloud presents several challenges, including data privacy and security, interoperability, scalability, and energy efficiency. Addressing these challenges is imperative for providing efficient and scalable solutions for data-intensive applications like federated learning, social data analysis, smart city services, and text mining. The special issue concludes with 27 scientific papers, divided into two parts for a streamlined editorial process. This editorial, as part two, presents 12 rigorously peer-reviewed papers, complementing the 15 papers covered in the previous editorial.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.