Xinquan Zou , Hongyuan Liu , Zhenyan Hu , Yi Zhang , Jinggang Cheng , Kun Wang , Yuwei Feng , Jikui Wang
{"title":"Rational design of antifreeze and flexible chitosan-based hydrogels for integration device of supercapacitors electrodes and wearable strain sensors","authors":"Xinquan Zou , Hongyuan Liu , Zhenyan Hu , Yi Zhang , Jinggang Cheng , Kun Wang , Yuwei Feng , Jikui Wang","doi":"10.1016/j.carbpol.2025.123342","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels with excellent flexibility are widely used in flexible sensors and supercapacitors, but their sensitivity and operating temperature range limit their application. In this study, chitosan (CS)/polyaniline (PANI) hydrogel with interpenetrating network structure is designed, in which phytic acid is used as crosslinking agent and antifreeze. The obtained CS/PANI hydrogel exhibits excellent mechanical properties, excellent sensing performance (Gauge Factor = 5.25), fast electrochemical response, high specific capacitance (383.7 F/g at 0.5 A/g) and good cycle stability, which may be due to the interpenetrating network structure formed between phytic acid cross-linked PANI and CS molecular chains. Due to these properties, CS/PANI hydrogels can be used as flexible sensors and supercapacitor electrodes materials. Because of the electrostatic interaction between the anionic and cationic groups in phytic acid, it also has certain frost resistance. The CS/PANI hydrogel can provide a high specific capacitance of 330 F/g at −40 °C. Compared with room temperature, the capacitance retention rate is as high as 87 %. It is believed that this CS/PANI hydrogel will be used as a new multifunctional material in many fields such as flexible electrodes, sensors and wearable devices in low temperature environments.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"354 ","pages":"Article 123342"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725001237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels with excellent flexibility are widely used in flexible sensors and supercapacitors, but their sensitivity and operating temperature range limit their application. In this study, chitosan (CS)/polyaniline (PANI) hydrogel with interpenetrating network structure is designed, in which phytic acid is used as crosslinking agent and antifreeze. The obtained CS/PANI hydrogel exhibits excellent mechanical properties, excellent sensing performance (Gauge Factor = 5.25), fast electrochemical response, high specific capacitance (383.7 F/g at 0.5 A/g) and good cycle stability, which may be due to the interpenetrating network structure formed between phytic acid cross-linked PANI and CS molecular chains. Due to these properties, CS/PANI hydrogels can be used as flexible sensors and supercapacitor electrodes materials. Because of the electrostatic interaction between the anionic and cationic groups in phytic acid, it also has certain frost resistance. The CS/PANI hydrogel can provide a high specific capacitance of 330 F/g at −40 °C. Compared with room temperature, the capacitance retention rate is as high as 87 %. It is believed that this CS/PANI hydrogel will be used as a new multifunctional material in many fields such as flexible electrodes, sensors and wearable devices in low temperature environments.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.