Probabilistic bearing capacity analysis of square and rectangular footings on cohesive soil slopes considering three-dimensional rotational anisotropy

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers and Geotechnics Pub Date : 2025-02-07 DOI:10.1016/j.compgeo.2025.107117
Xiaoming Liu , Qinji Jia , R.A. Galindo , Fengshan Mao
{"title":"Probabilistic bearing capacity analysis of square and rectangular footings on cohesive soil slopes considering three-dimensional rotational anisotropy","authors":"Xiaoming Liu ,&nbsp;Qinji Jia ,&nbsp;R.A. Galindo ,&nbsp;Fengshan Mao","doi":"10.1016/j.compgeo.2025.107117","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of soil variability on the probabilistic bearing capacity of strip footings near slopes has been extensively studied, particularly under short-term undrained conditions. However, these investigations, predominantly based on the plane-strain assumption, fall short in accurately estimating the bearing capacity of square and rectangular footings and in capturing the spatial variability of soils. This study focuses on short-term undrained conditions and employs the random finite element method (RFEM) and Monte Carlo simulation (MCS) techniques to explore the effect of rotational anisotropy on the bearing capacity response and failure probability of a square and rectangular footing-cohesive slope system under a three-dimensional (3D) framework. The findings reveal that the rotation angles of soil strata significantly impact both the mean and coefficient of variation of the bearing capacity, with distinct variation patterns emerging for different footing orientations and aspect ratios. Typical failure patterns are identified, illustrating the correlation between the bearing capacity response, the footing orientations and aspect ratios, and the extension direction of plasticity. The probabilistic results are presented as probability density functions (PDF) and cumulative distribution functions (CDF) for various rotation angles around the <em>x</em>-axis and <em>y</em>-axis and for different <em>L</em>/B ratios of the footings. Additionally, detailed design tables, including failure probability results and corresponding safety factors for specific target failure probabilities, are provided to guide engineering applications.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"181 ","pages":"Article 107117"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25000667","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of soil variability on the probabilistic bearing capacity of strip footings near slopes has been extensively studied, particularly under short-term undrained conditions. However, these investigations, predominantly based on the plane-strain assumption, fall short in accurately estimating the bearing capacity of square and rectangular footings and in capturing the spatial variability of soils. This study focuses on short-term undrained conditions and employs the random finite element method (RFEM) and Monte Carlo simulation (MCS) techniques to explore the effect of rotational anisotropy on the bearing capacity response and failure probability of a square and rectangular footing-cohesive slope system under a three-dimensional (3D) framework. The findings reveal that the rotation angles of soil strata significantly impact both the mean and coefficient of variation of the bearing capacity, with distinct variation patterns emerging for different footing orientations and aspect ratios. Typical failure patterns are identified, illustrating the correlation between the bearing capacity response, the footing orientations and aspect ratios, and the extension direction of plasticity. The probabilistic results are presented as probability density functions (PDF) and cumulative distribution functions (CDF) for various rotation angles around the x-axis and y-axis and for different L/B ratios of the footings. Additionally, detailed design tables, including failure probability results and corresponding safety factors for specific target failure probabilities, are provided to guide engineering applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
期刊最新文献
Seismic bearing capacity of rectangular foundations near slopes using the upper bound method A numerical solution for unsteady permeation grouting of Bingham grout in saturated porous media considering the threshold pressure gradient Effect of particle shape on the mechanical behavior of methane hydrate-bearing sediments: A DEM study Pore-network modeling of polymer flow in porous media Post-failure stage analysis of flow-type landslides using different numerical techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1