Can big data aggregation help businesses save energy and reduce emissions? Quasi-natural experiment in big data comprehensive test

IF 5 2区 经济学 Q1 ECONOMICS Structural Change and Economic Dynamics Pub Date : 2024-12-02 DOI:10.1016/j.strueco.2024.12.003
Jingyao Lv , Zhongxiu Zhao , Yongsheng Ji
{"title":"Can big data aggregation help businesses save energy and reduce emissions? Quasi-natural experiment in big data comprehensive test","authors":"Jingyao Lv ,&nbsp;Zhongxiu Zhao ,&nbsp;Yongsheng Ji","doi":"10.1016/j.strueco.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>Aggregating big data pieces is critical for increasing enterprise resource allocation efficiency, reducing energy usage, and lowering carbon emissions intensity. This research aims to investigate the impact of big data aggregation on energy efficiency and carbon emission intensity among Chinese enterprises. To this end, it employs primary financial data from Chinese listed companies from 2009 to 2021 and carbon emissions data disclosed in social responsibility reports, sustainable development reports, and environmental reports. The findings revealed that the aggregation of big data elements dramatically reduces the intensity of carbon emissions in firms in the pilot regions. The decrease effect is more effective in economically developed places and regions with higher degrees of digitization, particularly for organizations in high-energy-consuming industries, and it is more robust for small and non-state-owned businesses. The aggregation of big data elements mainly aids firms in pilot regions in lowering energy consumption and emissions by increasing technical innovation and energy usage efficiency. To create a new national competitive advantage, we should actively promote the gradual expansion of the comprehensive pilot zone for big data, advance the in-depth application of big data in environmental governance, and better capitalize on the dividends of big data aggregation.</div></div>","PeriodicalId":47829,"journal":{"name":"Structural Change and Economic Dynamics","volume":"72 ","pages":"Pages 89-102"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Change and Economic Dynamics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954349X24001784","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aggregating big data pieces is critical for increasing enterprise resource allocation efficiency, reducing energy usage, and lowering carbon emissions intensity. This research aims to investigate the impact of big data aggregation on energy efficiency and carbon emission intensity among Chinese enterprises. To this end, it employs primary financial data from Chinese listed companies from 2009 to 2021 and carbon emissions data disclosed in social responsibility reports, sustainable development reports, and environmental reports. The findings revealed that the aggregation of big data elements dramatically reduces the intensity of carbon emissions in firms in the pilot regions. The decrease effect is more effective in economically developed places and regions with higher degrees of digitization, particularly for organizations in high-energy-consuming industries, and it is more robust for small and non-state-owned businesses. The aggregation of big data elements mainly aids firms in pilot regions in lowering energy consumption and emissions by increasing technical innovation and energy usage efficiency. To create a new national competitive advantage, we should actively promote the gradual expansion of the comprehensive pilot zone for big data, advance the in-depth application of big data in environmental governance, and better capitalize on the dividends of big data aggregation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
4.90%
发文量
159
期刊介绍: Structural Change and Economic Dynamics publishes articles about theoretical, applied and methodological aspects of structural change in economic systems. The journal publishes work analysing dynamics and structural breaks in economic, technological, behavioural and institutional patterns.
期刊最新文献
The impact of supply chain digitization on the carbon emissions of listed companies—A quasi-natural experiment in China Legal gender equality as a catalyst for convergence The impact of 2008 tax reform on profit shifting of foreign enterprises in China Multi-factor, multi-country testing of the Heckscher-Ohlin theorem without factor price equalization: A critical view Impacts of Chinese demand and long term American interest rate on the dynamics of commodity prices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1