Scaffold geometries designed to promote bone ingrowth by enhancing mechanobiological stimulation and biotransportation - A multiobjective optimisation approach

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-12-31 DOI:10.1016/j.jmbbm.2024.106883
Ben M. Ferguson , Jonathan R. Clark , Qing Li
{"title":"Scaffold geometries designed to promote bone ingrowth by enhancing mechanobiological stimulation and biotransportation - A multiobjective optimisation approach","authors":"Ben M. Ferguson ,&nbsp;Jonathan R. Clark ,&nbsp;Qing Li","doi":"10.1016/j.jmbbm.2024.106883","DOIUrl":null,"url":null,"abstract":"<div><div>In a tissue-engineered bone scaffold implant, the process of neo-tissue ingrowth and remodelling into hard lamellar bone occurs slowly; it typically requires a period of several months to a year (or more) to complete. This research considers the design optimisation of a scaffold's unit cell geometry for the purpose of accelerating the rate at which neo-tissue forms in the porous network of the scaffold (ingrowth), and hence, reduce the length of time to complete the bone ingrowth process. In this study, the basic structure of the scaffold is the Schwarz Primitive (P) surface unit cell, selected for its compelling biomechanical and permeability characteristics. The geometry of the scaffold is varied using two parameters (namely iso-value, <em>k</em>, and spatial period, <em>a</em>) within the surface equation defining the Schwarz P-surface unit cell. In total, sixteen different unit cell geometries are considered here with the porosity ranging from 50% to 82%.</div><div>The design objectives for the scaffold are to (i) enhance mechanobiological stimulus conditions conducive to bone apposition and (ii) enhance permeability to improve the transport of nutrients/oxygen and metabolities to and from the sites of neo-tissue formation throughout the porous scaffold. The independent design variables (<span><math><mrow><mi>k</mi></mrow></math></span> and <span><math><mrow><mi>a</mi></mrow></math></span>) of the periodic unit cell geometry are optimised to best satisfy the design objectives of appositional mechanobiological stimulus and biotransporting permeability. First, a reconstructed sheep mandible computed tomographic (CT)-based finite element (FE) analysis model is used to relate the strain energy density and mechanobiological stimulus to the design variables. Next, a computational fluid dynamics (CFD) model of a 5 × 5 × 5 unit cell scaffold is developed to relate the distributions of pressure and fluid velocity to the design variables. Then, surrogate modelling is undertaken in which bivariate cubic polynomial response surfaces are fitted to the FE and CFD analysis output data to form mathematical functions of each objective with respect to the two design variables. Finally, a multiobjective optimisation algorithm is invoked to determine the best trade-off between the competing design objectives of mechanobiological stimulus and biofluidic permeability. The novel design of the scaffold structure is anticipated to provide a better biomechanical and biotransport environment for tissue regeneration.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"164 ","pages":"Article 106883"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124005150","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In a tissue-engineered bone scaffold implant, the process of neo-tissue ingrowth and remodelling into hard lamellar bone occurs slowly; it typically requires a period of several months to a year (or more) to complete. This research considers the design optimisation of a scaffold's unit cell geometry for the purpose of accelerating the rate at which neo-tissue forms in the porous network of the scaffold (ingrowth), and hence, reduce the length of time to complete the bone ingrowth process. In this study, the basic structure of the scaffold is the Schwarz Primitive (P) surface unit cell, selected for its compelling biomechanical and permeability characteristics. The geometry of the scaffold is varied using two parameters (namely iso-value, k, and spatial period, a) within the surface equation defining the Schwarz P-surface unit cell. In total, sixteen different unit cell geometries are considered here with the porosity ranging from 50% to 82%.
The design objectives for the scaffold are to (i) enhance mechanobiological stimulus conditions conducive to bone apposition and (ii) enhance permeability to improve the transport of nutrients/oxygen and metabolities to and from the sites of neo-tissue formation throughout the porous scaffold. The independent design variables (k and a) of the periodic unit cell geometry are optimised to best satisfy the design objectives of appositional mechanobiological stimulus and biotransporting permeability. First, a reconstructed sheep mandible computed tomographic (CT)-based finite element (FE) analysis model is used to relate the strain energy density and mechanobiological stimulus to the design variables. Next, a computational fluid dynamics (CFD) model of a 5 × 5 × 5 unit cell scaffold is developed to relate the distributions of pressure and fluid velocity to the design variables. Then, surrogate modelling is undertaken in which bivariate cubic polynomial response surfaces are fitted to the FE and CFD analysis output data to form mathematical functions of each objective with respect to the two design variables. Finally, a multiobjective optimisation algorithm is invoked to determine the best trade-off between the competing design objectives of mechanobiological stimulus and biofluidic permeability. The novel design of the scaffold structure is anticipated to provide a better biomechanical and biotransport environment for tissue regeneration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Editorial Board Mechanical modulation of docetaxel-treated bladder cancer cells by various changes in cytoskeletal structures Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy On the repeatability of wrinkling topography patterns in the fingers of water immersed human skin Skeletal impacts of dual in vivo compressive axial tibial and ulnar loading in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1