Enhancing foresight models with network science: Measuring innovation feedbacks within the Chain-Linked Model

IF 12.9 1区 管理学 Q1 BUSINESS Technological Forecasting and Social Change Pub Date : 2025-02-06 DOI:10.1016/j.techfore.2025.124010
Martin Ho , Henry C.W. Price , Tim S. Evans , Eoin O’Sullivan
{"title":"Enhancing foresight models with network science: Measuring innovation feedbacks within the Chain-Linked Model","authors":"Martin Ho ,&nbsp;Henry C.W. Price ,&nbsp;Tim S. Evans ,&nbsp;Eoin O’Sullivan","doi":"10.1016/j.techfore.2025.124010","DOIUrl":null,"url":null,"abstract":"<div><div>A granular understanding of innovation dynamics is crucial for forecasting how and when different actors within the innovation system can make valuable contributions. Existing theoretical foundations of the foresight practice are largely qualitative and often oversimplify the innovation process. While foresight practitioners acknowledge the existence of knowledge feedback loops, these feedback loops are rarely quantified systematically in empirical forecasting studies. Innovators and funders tend to choose their dyadic relationships but rarely have visibility over the wider, dynamic innovation network. This study enriches innovation theories for the foresight practice by leveraging multilayer citation networks to explore innovation translation pathways, achieved by integrating data from market entries, clinical trials, patents, publications, funders, and grants over a 70-year period. Our analysis shows shifts in the order, prevalence, and tipping points of translation activities as technologies mature, with granularity not described in previous studies. We also examine the distinct funding patterns of major public and private entities throughout this maturation process, revealing their unique contributions and enriching sociotechnical explanations of innovation processes. This study improves the explainability of technology forecasting through innovation theories by reconstructing micro-technical innovation dynamics from first principles.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"213 ","pages":"Article 124010"},"PeriodicalIF":12.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162525000411","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

A granular understanding of innovation dynamics is crucial for forecasting how and when different actors within the innovation system can make valuable contributions. Existing theoretical foundations of the foresight practice are largely qualitative and often oversimplify the innovation process. While foresight practitioners acknowledge the existence of knowledge feedback loops, these feedback loops are rarely quantified systematically in empirical forecasting studies. Innovators and funders tend to choose their dyadic relationships but rarely have visibility over the wider, dynamic innovation network. This study enriches innovation theories for the foresight practice by leveraging multilayer citation networks to explore innovation translation pathways, achieved by integrating data from market entries, clinical trials, patents, publications, funders, and grants over a 70-year period. Our analysis shows shifts in the order, prevalence, and tipping points of translation activities as technologies mature, with granularity not described in previous studies. We also examine the distinct funding patterns of major public and private entities throughout this maturation process, revealing their unique contributions and enriching sociotechnical explanations of innovation processes. This study improves the explainability of technology forecasting through innovation theories by reconstructing micro-technical innovation dynamics from first principles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.30
自引率
10.80%
发文量
813
期刊介绍: Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors. In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.
期刊最新文献
Rethinking the forecasting of innovation diffusion: A combined actor- and system approach Dynamic optimization of e-commerce supply chains for fresh products with blockchain and reference effect Hesitation at increasing integration: The feasibility of Norway expanding cross-border renewable electricity interconnection to support European decarbonisation Shaping the future through developing and managing breakthrough innovations: A new conceptual framework Critical successes factors for the adoption of additive manufacturing: Integrated impact for circular economy model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1