Comparative transcriptomic analysis and identification of candidate genes related to Verticillium wilt resistance in Gossypium barbadense and Gossypium hirsutum

IF 6.8 Q1 PLANT SCIENCES Plant Stress Pub Date : 2025-02-05 DOI:10.1016/j.stress.2025.100759
Jieyin Zhao , Xingui Hu , Yuxiang Wang, Jiaxin Lu, Wenju Gao, Xuening Su, Quanjia Chen, Yanying Qu
{"title":"Comparative transcriptomic analysis and identification of candidate genes related to Verticillium wilt resistance in Gossypium barbadense and Gossypium hirsutum","authors":"Jieyin Zhao ,&nbsp;Xingui Hu ,&nbsp;Yuxiang Wang,&nbsp;Jiaxin Lu,&nbsp;Wenju Gao,&nbsp;Xuening Su,&nbsp;Quanjia Chen,&nbsp;Yanying Qu","doi":"10.1016/j.stress.2025.100759","DOIUrl":null,"url":null,"abstract":"<div><div>The resistance to Verticillium wilt in <em>Gossypium barbadense</em> is generally greater than that in <em>Gossypium hirsutum</em>, and analyzing the differences in the mechanism and regulatory genes involved in Verticillium wilt resistance between G<em>. barbadense</em> and G<em>. hirsutum</em> is particularly important. Here, we report a transcriptomic study for phenotypic evaluation of Verticillium wilt resistance in G<em>. hirsutum</em> (TM-1) and G<em>. barbadense</em> (Hai7124) and a comparison of the transcriptomes at 7 time points after <em>Verticillium dahliae</em> inoculation. Phenotypic evaluation revealed that, compared with TM-1, Hai7124 was more resistant to Verticillium wilt. A total of 18,138 differentially expressed genes (DEGs), including 1470 transcription factors (TFs). Further analysis of the expression of hormone biosynthesis- and signal transduction-related genes revealed that most of the genes in the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) biosynthesis pathways were highly expressed in Hai7124; the expression of SA and JA biosynthesis genes began to be significantly upregulated in the early stage of Verticillium wilt stress, while the expression of ET biosynthesis genes was upregulated mainly in the later stage. WGCNA-based binding sequence comparison revealed that MYB14 had nonsynonymous single nucleotide polymorphisms (SNPs) in 5 highly Verticillium wilt-resistant G<em>. barbadense</em> varieties compared to 5 highly Verticillium wilt-susceptible G<em>. hirsutum</em> varieties. Expression analysis revealed that <em>GbMYB14</em> responded more rapidly to Verticillium wilt stress than the same gene in G<em>. hirsutum</em>. The resistance of G<em>. barbadense</em> and G<em>. hirsutum</em> to Verticillium wilt decreased after MYB14 silencing via virus induced gene silencing (VIGS), and leaf yellowing and necrosis in the <em>GbMYB14</em>-silenced plants were more obvious. Compared with those in G<em>. hirsutum</em>, the expression levels and of lignin biosynthesis pathway genes and the lignin content in <em>GbMYB14</em>-silenced plants were lower. In conclusion, our results provide a theoretical basis for an in-depth understanding of the molecular mechanism underlying the difference in Verticillium wilt resistance between G<em>. barbadense</em> and G<em>. hirsutum</em> and provide a new genetic resource for the study of cotton resistance to Verticillium wilt.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"15 ","pages":"Article 100759"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X25000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The resistance to Verticillium wilt in Gossypium barbadense is generally greater than that in Gossypium hirsutum, and analyzing the differences in the mechanism and regulatory genes involved in Verticillium wilt resistance between G. barbadense and G. hirsutum is particularly important. Here, we report a transcriptomic study for phenotypic evaluation of Verticillium wilt resistance in G. hirsutum (TM-1) and G. barbadense (Hai7124) and a comparison of the transcriptomes at 7 time points after Verticillium dahliae inoculation. Phenotypic evaluation revealed that, compared with TM-1, Hai7124 was more resistant to Verticillium wilt. A total of 18,138 differentially expressed genes (DEGs), including 1470 transcription factors (TFs). Further analysis of the expression of hormone biosynthesis- and signal transduction-related genes revealed that most of the genes in the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) biosynthesis pathways were highly expressed in Hai7124; the expression of SA and JA biosynthesis genes began to be significantly upregulated in the early stage of Verticillium wilt stress, while the expression of ET biosynthesis genes was upregulated mainly in the later stage. WGCNA-based binding sequence comparison revealed that MYB14 had nonsynonymous single nucleotide polymorphisms (SNPs) in 5 highly Verticillium wilt-resistant G. barbadense varieties compared to 5 highly Verticillium wilt-susceptible G. hirsutum varieties. Expression analysis revealed that GbMYB14 responded more rapidly to Verticillium wilt stress than the same gene in G. hirsutum. The resistance of G. barbadense and G. hirsutum to Verticillium wilt decreased after MYB14 silencing via virus induced gene silencing (VIGS), and leaf yellowing and necrosis in the GbMYB14-silenced plants were more obvious. Compared with those in G. hirsutum, the expression levels and of lignin biosynthesis pathway genes and the lignin content in GbMYB14-silenced plants were lower. In conclusion, our results provide a theoretical basis for an in-depth understanding of the molecular mechanism underlying the difference in Verticillium wilt resistance between G. barbadense and G. hirsutum and provide a new genetic resource for the study of cotton resistance to Verticillium wilt.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴氏棉和毛棉抗黄萎病相关基因的比较转录组学分析及候选基因鉴定
棉对黄萎病的抗性普遍大于棉,分析棉和棉抗黄萎病的机制和调控基因的差异尤为重要。在此,我们报道了一项转录组学研究,以评估G. hirsutum (TM-1)和G. barbadense (Hai7124)对黄萎病抗性的表型评价,并比较了接种黄萎病后7个时间点的转录组学。表型评价表明,与TM-1相比,Hai7124对黄萎病的抗性更强。共有18,138个差异表达基因(DEGs),其中转录因子(TFs) 1470个。进一步分析激素生物合成和信号转导相关基因的表达情况发现,在海7124中,水杨酸(SA)、茉莉酸(JA)和乙烯(ET)生物合成途径中大部分基因高表达;SA和JA生物合成基因的表达在黄萎病胁迫早期开始显著上调,而ET生物合成基因的表达上调主要发生在后期。基于wgna的结合序列比较发现,5个高黄萎病抗性品种与5个高黄萎病敏感性品种相比,MYB14具有非同义单核苷酸多态性(snp)。表达分析表明,GbMYB14基因对黄萎病胁迫的响应比相同基因在棉花中的响应更快。通过病毒诱导基因沉默(VIGS)对MYB14进行沉默后,巴贝登和毛毛藓对黄萎病的抗性降低,且沉默植株叶片黄变和坏死更加明显。gbmyb14沉默植株中木质素生物合成途径基因的表达量和木质素含量均低于毛毛草。本研究结果为深入了解棉花黄萎病抗性差异的分子机制提供了理论依据,并为棉花黄萎病抗性研究提供了新的遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Stress
Plant Stress PLANT SCIENCES-
CiteScore
5.20
自引率
8.00%
发文量
76
审稿时长
63 days
期刊介绍: The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues. Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and: Lack of water (drought) and excess (flooding), Salinity stress, Elevated temperature and/or low temperature (chilling and freezing), Hypoxia and/or anoxia, Mineral nutrient excess and/or deficiency, Heavy metals and/or metalloids, Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection, Viral, phytoplasma, bacterial and fungal plant-pathogen interactions. The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.
期刊最新文献
Identification of the sugarcane invertase gene family with deciphering the key role of ShN/AINV3.1 in drought stress response OsRbohB-mediated H2O2 signaling underlies rice copper tolerance by regulating copper uptake and detoxification gene expression F-53B interferes with meiosis and damages reproduction in Arabidopsis thaliana OsVIRK1 functions with OsbZIP39 to fine-tune rice defense against rice stripe virus Integrated physiological, hormonal, and metabolic mechanisms regulating wheat yield quality under combined drought and heat stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1