Changes in sediment connectivity and its impact on sediment transport in a typical watershed of Southern Jiangxi Province, China

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecological Indicators Pub Date : 2025-02-01 DOI:10.1016/j.ecolind.2025.113204
Fei Sheng , Tingxin Yi , Yanyan Wang , Haijin Zheng , Shiyu Liu , Xiaofei Nie , Longsong Hu , Haifeng Li
{"title":"Changes in sediment connectivity and its impact on sediment transport in a typical watershed of Southern Jiangxi Province, China","authors":"Fei Sheng ,&nbsp;Tingxin Yi ,&nbsp;Yanyan Wang ,&nbsp;Haijin Zheng ,&nbsp;Shiyu Liu ,&nbsp;Xiaofei Nie ,&nbsp;Longsong Hu ,&nbsp;Haifeng Li","doi":"10.1016/j.ecolind.2025.113204","DOIUrl":null,"url":null,"abstract":"<div><div>Sediment connectivity is a crucial factor in determining the mode, efficiency, and scale of sediment transport. However, changes in sediment connectivity and their impact on sediment transport in southern Jiangxi Province, China, remain unclear. Consequently, the Lianshui watershed in southern Jiangxi Province was selected as the study area for this research. Using hydrometeorological and land use data from 1992 to 2023, this study examines variations in sediment connectivity and sediment transport eigenvalues within the watershed. It also investigates the hysteresis relationship between runoff and sediment under single rainstorm conditions and assesses the impact of changes in sediment connectivity on sediment transport. The findings revealed that the mean index of sediment connectivity (<em>IC</em><sub>mean</sub>) in the watershed from 1992 to 2023 exhibited a highly significant upward trend. The <em>IC</em><sub>mean</sub> for each land use type increased significantly, with the <em>IC</em><sub>mean</sub> for other woodland changing dramatically. The hotspot area of the index of sediment connectivity (IC) showed significant spatial expansion. The annual sediment yield (<em>S</em>), sediment yield modulus (<em>S</em><sub>SY</sub>), sediment yield coefficient (<em>C</em><sub>s</sub>), 3-year and 5-year moving average sediment yield (<em>S</em><sub>3a</sub>, <em>S</em><sub>5a</sub>) all increased significantly from 1992 to 2023. Under single rainstorm conditions, the proportion of each runoff-sediment loop curve varied greatly across different periods. The highest proportion of counterclockwise and figure-eight curves was found during the periods 2001–2008 and 2009–2023, at 35.3% and 54.0%, respectively. These changes were closely related to the location and quantity of sediment sources caused by the large-scale development of orchards in the watershed. The interpretation of <em>IC</em><sub>max</sub> to the changes in <em>S</em><sub>3a</sub> and <em>S</em><sub>5a</sub> was 51.5%, indicating a highly significant effect. This suggests that alterations in sediment connectivity play a crucial role in sediment transport processes. The research results provide a scientific basis for controlling soil erosion and optimizing land use allocation in the watershed.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"171 ","pages":"Article 113204"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X25001335","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sediment connectivity is a crucial factor in determining the mode, efficiency, and scale of sediment transport. However, changes in sediment connectivity and their impact on sediment transport in southern Jiangxi Province, China, remain unclear. Consequently, the Lianshui watershed in southern Jiangxi Province was selected as the study area for this research. Using hydrometeorological and land use data from 1992 to 2023, this study examines variations in sediment connectivity and sediment transport eigenvalues within the watershed. It also investigates the hysteresis relationship between runoff and sediment under single rainstorm conditions and assesses the impact of changes in sediment connectivity on sediment transport. The findings revealed that the mean index of sediment connectivity (ICmean) in the watershed from 1992 to 2023 exhibited a highly significant upward trend. The ICmean for each land use type increased significantly, with the ICmean for other woodland changing dramatically. The hotspot area of the index of sediment connectivity (IC) showed significant spatial expansion. The annual sediment yield (S), sediment yield modulus (SSY), sediment yield coefficient (Cs), 3-year and 5-year moving average sediment yield (S3a, S5a) all increased significantly from 1992 to 2023. Under single rainstorm conditions, the proportion of each runoff-sediment loop curve varied greatly across different periods. The highest proportion of counterclockwise and figure-eight curves was found during the periods 2001–2008 and 2009–2023, at 35.3% and 54.0%, respectively. These changes were closely related to the location and quantity of sediment sources caused by the large-scale development of orchards in the watershed. The interpretation of ICmax to the changes in S3a and S5a was 51.5%, indicating a highly significant effect. This suggests that alterations in sediment connectivity play a crucial role in sediment transport processes. The research results provide a scientific basis for controlling soil erosion and optimizing land use allocation in the watershed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
期刊最新文献
Temporal analyses of global suitability distribution for fall armyworm based on Multiple factors Linking the life stages of fish into a habitat-ecological flow assessment scheme under climate change and human activities Spatial-temporal differentiation and influencing factors of ecosystem health in Three-River-Source national Park Changes in sediment connectivity and its impact on sediment transport in a typical watershed of Southern Jiangxi Province, China Exploring the decline in health index of the Qarhan salt lake region in Qinghai Province, China: A 40-year assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1