{"title":"Theoretical design of 2D hybrid lead-free halide perovskites for photovoltaic applications","authors":"Huanhuan Li, Biao Ding, Shuai Zhao, Lin Chen","doi":"10.1016/j.jpcs.2025.112619","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional hybrid halide perovskites are emerging as promising candidates for optoelectronic applications due to their enhanced environmental stability, tunable structure and bandgap, and high quantum efficiency. However, the risk of toxic lead leakage and inherent instability remain significant challenges for the large-scale commercialization of organic-inorganic halide perovskites. In this study, we conducted first-principles investigations into the optoelectronic properties of a series of two-dimensional hybrid lead-free halide perovskite materials, BAMX<sub>2</sub>Y<sub>2</sub> (BA = C<sub>4</sub>H<sub>9</sub>NH<sub>3</sub><sup>+</sup>; M = Sb and Bi; X, Y<img>Cl, Br, and I) and assessed their photovoltaic performances based on drift-diffusion simulations. The antimony-based compounds BASbI<sub>4</sub>, BASbCl<sub>2</sub>I<sub>2</sub>, and BASbBr<sub>2</sub>I<sub>2</sub> are predicted to have desired direct bandgaps within the optimal range and exhibit strong absorption capacity for visible light. Based on these favorable properties, we simulated the photovoltaic performance of thin-film solar cells based on these materials using the SCAPS-1D code, achieving high power conversion efficiencies of 26.15 %, 22.91 %, and 22.31 %, respectively. These results suggest that BASbI<sub>4</sub>, BASbBr<sub>2</sub>I<sub>2</sub>, and BASbCl<sub>2</sub>I<sub>2</sub> could serve as potential alternatives to lead-based halide perovskites in photovoltaic devices.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"200 ","pages":"Article 112619"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725000708","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional hybrid halide perovskites are emerging as promising candidates for optoelectronic applications due to their enhanced environmental stability, tunable structure and bandgap, and high quantum efficiency. However, the risk of toxic lead leakage and inherent instability remain significant challenges for the large-scale commercialization of organic-inorganic halide perovskites. In this study, we conducted first-principles investigations into the optoelectronic properties of a series of two-dimensional hybrid lead-free halide perovskite materials, BAMX2Y2 (BA = C4H9NH3+; M = Sb and Bi; X, YCl, Br, and I) and assessed their photovoltaic performances based on drift-diffusion simulations. The antimony-based compounds BASbI4, BASbCl2I2, and BASbBr2I2 are predicted to have desired direct bandgaps within the optimal range and exhibit strong absorption capacity for visible light. Based on these favorable properties, we simulated the photovoltaic performance of thin-film solar cells based on these materials using the SCAPS-1D code, achieving high power conversion efficiencies of 26.15 %, 22.91 %, and 22.31 %, respectively. These results suggest that BASbI4, BASbBr2I2, and BASbCl2I2 could serve as potential alternatives to lead-based halide perovskites in photovoltaic devices.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.