Changyun Wang , Yao Liu , Zhuyin Tong, Shujie Cai, Yichong Wang, Nengwang Chen, Bangqin Huang, Wupeng Xiao
{"title":"Cryptophyte diversity and assembly mechanisms reveal ecological discontinuities in a river-estuary-coast continuum","authors":"Changyun Wang , Yao Liu , Zhuyin Tong, Shujie Cai, Yichong Wang, Nengwang Chen, Bangqin Huang, Wupeng Xiao","doi":"10.1016/j.ecolind.2025.113114","DOIUrl":null,"url":null,"abstract":"<div><div>Cryptophytes, a group of microalgae, play crucial roles in aquatic ecosystems but have been relatively understudied, particularly in terms of their diversity and community assembly along environmental gradients. This study investigated the diversity patterns and assembly mechanisms of cryptophyte communities across a river-estuary-coast continuum in southeast China. Contrary to Remane’s Artenminimum hypothesis, which predicts a minimum in species diversity at intermediate salinities, we observed a peak in cryptophyte richness within the estuarine zone. This finding suggests that cryptophytes may follow different ecological rules compared to macrozoobenthos, perhaps because of the complex habitat heterogeneity and the dynamic mixing of freshwater and marine species in estuaries. Our analyses also revealed significant ecological discontinuities along the continuum, particularly at the estuarine interface, where deterministic processes, such as salinity-driven selection, become more influential in community assembly across habitat boundaries. Co-occurrence network analyses further highlighted the estuary as a hotspot of biological interactions, characterized by a complex network structure that supports high species richness. These results underscore the importance of considering ecological discontinuities and habitat-specific processes in the management and conservation of connected aquatic ecosystems, particularly in transitional environments like estuaries that are subject to rapid environmental changes.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"171 ","pages":"Article 113114"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X25000433","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cryptophytes, a group of microalgae, play crucial roles in aquatic ecosystems but have been relatively understudied, particularly in terms of their diversity and community assembly along environmental gradients. This study investigated the diversity patterns and assembly mechanisms of cryptophyte communities across a river-estuary-coast continuum in southeast China. Contrary to Remane’s Artenminimum hypothesis, which predicts a minimum in species diversity at intermediate salinities, we observed a peak in cryptophyte richness within the estuarine zone. This finding suggests that cryptophytes may follow different ecological rules compared to macrozoobenthos, perhaps because of the complex habitat heterogeneity and the dynamic mixing of freshwater and marine species in estuaries. Our analyses also revealed significant ecological discontinuities along the continuum, particularly at the estuarine interface, where deterministic processes, such as salinity-driven selection, become more influential in community assembly across habitat boundaries. Co-occurrence network analyses further highlighted the estuary as a hotspot of biological interactions, characterized by a complex network structure that supports high species richness. These results underscore the importance of considering ecological discontinuities and habitat-specific processes in the management and conservation of connected aquatic ecosystems, particularly in transitional environments like estuaries that are subject to rapid environmental changes.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.