{"title":"Evolution of the “Production-Living-Ecological” space of urban trituration and its prediction of carbon mitigation potential–The case of Xi’an","authors":"Jinzhao Song, Jie Lei, Peijia Wang","doi":"10.1016/j.ecolind.2025.113137","DOIUrl":null,"url":null,"abstract":"<div><div>Under the perspective of spatial low-carbon optimization, revealing the changes in the production-living-ecological space pattern and its carbon emission pattern of the historical capital-type city is of great significance for deepening the theory of land use transformation and helping the country achieve its dual-carbon goal. Therefore, spatial transfer matrix and dynamic analysis are used to study the transformation characteristics of space in Xi’an from 2000 to 2020, and the spatial and temporal evolution pattern of carbon emissions in the region and the impact of spatial transformation on carbon emissions are identified and simulated by the carbon emission accounting method and the patch-generating land use simulation (PLUS) model. The results show that the spatial of Xi’an City during the study period is characterized by a pattern of high in the south and low in the north, and the trend of spatial transition is characterized by slow fluctuation in the early stage and dramatic development in the late stage. The net carbon emission of Xi’an City showed a fluctuating increase, and the net carbon emission increased by 3,683,800 tons in 20 years. The mutual transformation between rural production space, grassland ecological space and urban production space mainly leads to the increase or decrease of carbon emissions. The drivers of spatial expansion are mainly elevation, annual precipitation and GDP density. The relatively low net carbon emissions of the 2030 spatial utilization of Xi’an under the social priority development scenario can provide a reference for the future territorial planning of Xi’an.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"171 ","pages":"Article 113137"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X25000664","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Under the perspective of spatial low-carbon optimization, revealing the changes in the production-living-ecological space pattern and its carbon emission pattern of the historical capital-type city is of great significance for deepening the theory of land use transformation and helping the country achieve its dual-carbon goal. Therefore, spatial transfer matrix and dynamic analysis are used to study the transformation characteristics of space in Xi’an from 2000 to 2020, and the spatial and temporal evolution pattern of carbon emissions in the region and the impact of spatial transformation on carbon emissions are identified and simulated by the carbon emission accounting method and the patch-generating land use simulation (PLUS) model. The results show that the spatial of Xi’an City during the study period is characterized by a pattern of high in the south and low in the north, and the trend of spatial transition is characterized by slow fluctuation in the early stage and dramatic development in the late stage. The net carbon emission of Xi’an City showed a fluctuating increase, and the net carbon emission increased by 3,683,800 tons in 20 years. The mutual transformation between rural production space, grassland ecological space and urban production space mainly leads to the increase or decrease of carbon emissions. The drivers of spatial expansion are mainly elevation, annual precipitation and GDP density. The relatively low net carbon emissions of the 2030 spatial utilization of Xi’an under the social priority development scenario can provide a reference for the future territorial planning of Xi’an.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.