Experiments study on landslide motion and damming deposit for particle and block materials with different mechanical properties

IF 2.7 2区 地球科学 Q1 GEOLOGY Sedimentary Geology Pub Date : 2025-02-03 DOI:10.1016/j.sedgeo.2025.106825
Ming-wei Ma , Jia-wen Zhou , Xing-guo Yang , Yi-hui Liang , Tao Yang , Hai-mei Liao
{"title":"Experiments study on landslide motion and damming deposit for particle and block materials with different mechanical properties","authors":"Ming-wei Ma ,&nbsp;Jia-wen Zhou ,&nbsp;Xing-guo Yang ,&nbsp;Yi-hui Liang ,&nbsp;Tao Yang ,&nbsp;Hai-mei Liao","doi":"10.1016/j.sedgeo.2025.106825","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the impact of granular materials with varying moisture contents and particle sizes, as well as block materials with different volumes and layer strengths, on landslide fragmentation, motion, and deposit. The experimental results show that as particle size increases, the maximum dam height (<em>H</em><sub><em>max</em></sub>) and width (<em>W</em><sub><em>max</em></sub>) increase, while the minimum dam height (<em>H</em><sub><em>min</em></sub>) decreases, indicating an improvement in the stability of landslide dams. Larger particle sizes are less sensitive to changes in moisture content. Additionally, moisture content inhibits <em>W</em><sub><em>max</em></sub>, with mixed particle-size materials showing a greater reduction compared to single particle-size materials. As <em>W</em><sub><em>max</em></sub> increases, the maximum dam length (<em>L</em><sub><em>max</em></sub>) decreases exponentially. Sliding time (<em>T</em><sub><em>s</em></sub>), deposition time (<em>T</em><sub><em>d</em></sub>), and total time (<em>T</em>) decrease as particle size increases. For mixed particle-size materials, a more continuous particle size distribution further reduces <em>T</em><sub><em>s</em></sub>, <em>T</em><sub><em>d</em></sub>, and <em>T</em>. Block material experiments show that with increasing block volume, <em>W</em><sub><em>max</em></sub>, <em>L</em><sub><em>max</em></sub>, and <em>H</em><sub><em>max</em></sub> increase significantly, with corresponding increases in <em>T</em><sub><em>s</em></sub><em>, T</em><sub><em>d</em></sub>, and <em>T</em>. When the strength of the lower layer material decreases, <em>W</em><sub><em>max</em></sub> and <em>H</em><sub><em>max</em></sub> decrease, while <em>T</em><sub><em>s</em></sub><em>, T</em><sub><em>d</em></sub>, and <em>T</em> increase. Conversely, when the lower layer material strength increases, the opposite effect is observed. Frictional energy loss (<em>E</em><sub><em>f</em></sub>) is the primary energy loss pathway, with both total energy loss and <em>E</em><sub><em>f</em></sub> decreasing with increasing particle size. Localized energy losses are mainly due to terrain collisions, independent of moisture content.</div></div>","PeriodicalId":21575,"journal":{"name":"Sedimentary Geology","volume":"478 ","pages":"Article 106825"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sedimentary Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003707382500020X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the impact of granular materials with varying moisture contents and particle sizes, as well as block materials with different volumes and layer strengths, on landslide fragmentation, motion, and deposit. The experimental results show that as particle size increases, the maximum dam height (Hmax) and width (Wmax) increase, while the minimum dam height (Hmin) decreases, indicating an improvement in the stability of landslide dams. Larger particle sizes are less sensitive to changes in moisture content. Additionally, moisture content inhibits Wmax, with mixed particle-size materials showing a greater reduction compared to single particle-size materials. As Wmax increases, the maximum dam length (Lmax) decreases exponentially. Sliding time (Ts), deposition time (Td), and total time (T) decrease as particle size increases. For mixed particle-size materials, a more continuous particle size distribution further reduces Ts, Td, and T. Block material experiments show that with increasing block volume, Wmax, Lmax, and Hmax increase significantly, with corresponding increases in Ts, Td, and T. When the strength of the lower layer material decreases, Wmax and Hmax decrease, while Ts, Td, and T increase. Conversely, when the lower layer material strength increases, the opposite effect is observed. Frictional energy loss (Ef) is the primary energy loss pathway, with both total energy loss and Ef decreasing with increasing particle size. Localized energy losses are mainly due to terrain collisions, independent of moisture content.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sedimentary Geology
Sedimentary Geology 地学-地质学
CiteScore
5.10
自引率
7.10%
发文量
133
审稿时长
32 days
期刊介绍: Sedimentary Geology is a journal that rapidly publishes high quality, original research and review papers that cover all aspects of sediments and sedimentary rocks at all spatial and temporal scales. Submitted papers must make a significant contribution to the field of study and must place the research in a broad context, so that it is of interest to the diverse, international readership of the journal. Papers that are largely descriptive in nature, of limited scope or local geographical significance, or based on limited data will not be considered for publication.
期刊最新文献
Seismogenic liquefaction with M ∼ 3.5 in fine-grained sediments: An experimental approach Experiments study on landslide motion and damming deposit for particle and block materials with different mechanical properties Re-inundation of the North China epeiric platform: A cyclic peritidal succession above a Lower–Middle Ordovician unconformity in southern Korea Editorial Board In-situ sulfur isotope characteristic and genesis of sedimentary pyrite with varying crystal morphologies in coal-bearing strata in North China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1