Waste artificial marble pyrolysis and hydrolysis

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Waste management Pub Date : 2025-02-06 DOI:10.1016/j.wasman.2025.01.032
Jacopo De Tommaso , Federico Galli , Tien Dat Nguyen , Yanfa Zhuang , Jean-Luc Dubois , Gregory S. Patience
{"title":"Waste artificial marble pyrolysis and hydrolysis","authors":"Jacopo De Tommaso ,&nbsp;Federico Galli ,&nbsp;Tien Dat Nguyen ,&nbsp;Yanfa Zhuang ,&nbsp;Jean-Luc Dubois ,&nbsp;Gregory S. Patience","doi":"10.1016/j.wasman.2025.01.032","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial marble, a composite material consisting of 40 % (g g<sup>−1</sup>) Poly Methyl Methacrylate (PMMA) and 60 % (g g<sup>−1</sup>) aluminium hydroxide <span><math><mrow><mtext>Al(OH)3</mtext></mrow></math></span>, combines the durability and aesthetics of real marble with the lightweight and moldability of plastic. It is the most sought-after synthetic stone in the world, with a production volume of over 1 million t in 2021. However, due to a high level of cross-linking, mechanical recycling of the composite is impossible, while chemical recycling is achievable, yet unprofitable. The only economically viable recycling solution is to retain the value of both the organic and inorganic fraction of the composite. We investigated the pyrolysis and hydrolysis of post-consumer end-of-life artificial marble to identify possible valorization routes, examining the effects of temperature, water content, catalyst presence, and heating style. Temperature directly accelerates thermolysis, and indirectly hydrolysis. The water inherently present in <span><math><mrow><mtext>Al(OH)3</mtext></mrow></math></span> drives initial hydrolysis, and temperature expedites inorganic fraction dehydration, increasing local water partial pressure near polymer ester sites. Above 350<!--> <!-->°C, PMMAeq depolymerizes faster than it hydrolyzes, balancing the effects of temperature on water dehydration with the depletion of available ester sites for hydrolysis. Contrary to intuition, PMMA does not depolymerize to its monomer MMA and then hydrolyze its acid (methacrylic acid); instead, PMMA partially hydrolyzes to poly methacrylic acid (PMAA) while also depolymerizing to MMA. PMAA then dehydrates and degrades, releasing CO and CO<sub>2</sub>. The optimal method involves a heating ramp that first releases water at 300<!--> <!-->°C, minimizing hydrolysis, and then favors MMA production at 400<!--> <!-->°C, achieving a 66 % (g g<sup>−1</sup>) MMA yield. Regardless of the operative conditions, the inorganic fraction transforms from <span><math><mrow><mtext>Al(OH)3</mtext></mrow></math></span> to a <span><math><mi>γ</mi></math></span>-alumina precursor, boehmite. Additionally, the remaining polymer in the residue, about 9 % (g g<sup>−1</sup>), has the required heat capacity for an energy-self sufficient calcination to <span><math><mi>γ</mi></math></span>-alumina. This dual-phase process not only maximizes MMA recovery but also retains the value of the inorganic fraction, providing a sustainable and economically viable recycling method for artificial marble.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"195 ","pages":"Pages 129-144"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25000315","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial marble, a composite material consisting of 40 % (g g−1) Poly Methyl Methacrylate (PMMA) and 60 % (g g−1) aluminium hydroxide Al(OH)3, combines the durability and aesthetics of real marble with the lightweight and moldability of plastic. It is the most sought-after synthetic stone in the world, with a production volume of over 1 million t in 2021. However, due to a high level of cross-linking, mechanical recycling of the composite is impossible, while chemical recycling is achievable, yet unprofitable. The only economically viable recycling solution is to retain the value of both the organic and inorganic fraction of the composite. We investigated the pyrolysis and hydrolysis of post-consumer end-of-life artificial marble to identify possible valorization routes, examining the effects of temperature, water content, catalyst presence, and heating style. Temperature directly accelerates thermolysis, and indirectly hydrolysis. The water inherently present in Al(OH)3 drives initial hydrolysis, and temperature expedites inorganic fraction dehydration, increasing local water partial pressure near polymer ester sites. Above 350 °C, PMMAeq depolymerizes faster than it hydrolyzes, balancing the effects of temperature on water dehydration with the depletion of available ester sites for hydrolysis. Contrary to intuition, PMMA does not depolymerize to its monomer MMA and then hydrolyze its acid (methacrylic acid); instead, PMMA partially hydrolyzes to poly methacrylic acid (PMAA) while also depolymerizing to MMA. PMAA then dehydrates and degrades, releasing CO and CO2. The optimal method involves a heating ramp that first releases water at 300 °C, minimizing hydrolysis, and then favors MMA production at 400 °C, achieving a 66 % (g g−1) MMA yield. Regardless of the operative conditions, the inorganic fraction transforms from Al(OH)3 to a γ-alumina precursor, boehmite. Additionally, the remaining polymer in the residue, about 9 % (g g−1), has the required heat capacity for an energy-self sufficient calcination to γ-alumina. This dual-phase process not only maximizes MMA recovery but also retains the value of the inorganic fraction, providing a sustainable and economically viable recycling method for artificial marble.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
期刊最新文献
Editorial Board Recovery and recycling of silica fabric from waste printed circuit boards to develop epoxy composite for electrical and thermal insulation applications Stepping up to the plate: Leadership and local government waste managers opinions of household food waste interventions Generalization abilities of foundation models in waste classification Increased stability of CuFe2O4 oxygen carriers in biomass combustion by Mg doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1