{"title":"Towards the first synthetic eukaryotic cell","authors":"Wangyue Xu , Yue Teng , Sijie Zhou","doi":"10.1016/j.bsheal.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advance in synthetic biology and the expanding field of synthetic genomics, the realization of a redesigned yeast genome has become an achievable milestone. Multiple eukaryotic chromosomes, meticulously designed and synthesized, are now being systematically integrated to create an entirely synthetic eukaryotic cell. This comprehensive review examines the fundamental design principles and construction strategies, highlighting critical technological breakthroughs in pursuing the first synthetic eukaryotic cell. Additionally, it underscores the critical contributions of the Sc2.0 project, which has provided essential tools and engineered cellular platforms that have significantly accelerated research and industrial progress. The ethical and legal implications arising from synthetic eukaryotic life are also explored, offering insights into future research directions for synthetic eukaryotic genomes. The remarkable advances in deoxyribonucleic acid synthesis hold immense potential, promising to unlock new opportunities across medicine, industry, agriculture, and research.</div></div>","PeriodicalId":36178,"journal":{"name":"Biosafety and Health","volume":"6 6","pages":"Pages 376-382"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosafety and Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590053624001320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advance in synthetic biology and the expanding field of synthetic genomics, the realization of a redesigned yeast genome has become an achievable milestone. Multiple eukaryotic chromosomes, meticulously designed and synthesized, are now being systematically integrated to create an entirely synthetic eukaryotic cell. This comprehensive review examines the fundamental design principles and construction strategies, highlighting critical technological breakthroughs in pursuing the first synthetic eukaryotic cell. Additionally, it underscores the critical contributions of the Sc2.0 project, which has provided essential tools and engineered cellular platforms that have significantly accelerated research and industrial progress. The ethical and legal implications arising from synthetic eukaryotic life are also explored, offering insights into future research directions for synthetic eukaryotic genomes. The remarkable advances in deoxyribonucleic acid synthesis hold immense potential, promising to unlock new opportunities across medicine, industry, agriculture, and research.