Detection, attribution and projection of changes in the extreme temperature range in the Northern Hemisphere

IF 6.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Advances in Climate Change Research Pub Date : 2024-12-01 DOI:10.1016/j.accre.2024.10.006
Xiao-Fan Feng , Cheng Qian
{"title":"Detection, attribution and projection of changes in the extreme temperature range in the Northern Hemisphere","authors":"Xiao-Fan Feng ,&nbsp;Cheng Qian","doi":"10.1016/j.accre.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>The extreme temperature range (ETR) is the span between the highest and lowest temperature of a given year, and is a manifestation of extreme temperature variability. It is regarded as having significant environmental and societal impacts, but the influences of human activities on changes in the ETR remain unclear. Here we performed a detection and attribution analysis of the changes in the ETR over the land areas of the Northern Hemisphere (NH) for the period 1960–2018, based on the optimal fingerprinting approach. We found that anthropogenic forcing could be detected and separated from natural forcing, and greenhouse gas forcing could be detected and separated from anthropogenic aerosol forcing, in the spatiotemporal pattern of the NH and in the regional average of the high latitudes. It is estimated that anthropogenic forcing (greenhouse gas emissions) contributed to 129% (152%) of the significant decreasing trend in the NH-averaged ETR. Moreover, compared to the average of 1999–2018, the NH (North America)-averaged ETR was projected to further significantly decrease by 6.7 °C (14.0 °C) in 2081–2100 under the SSP5-8.5 scenario, based on attribution-constrained projection, the magnitude of which was larger than in the models’ raw outputs. In contrast, the ETR was projected to increase significantly in the Mediterranean and adjacent regions under the SSP5-8.5 scenario, and in Central Europe, West Africa, Central Asia, South Asia, and parts of China under the SSP1-1.9 scenario. These results have important implications for understanding and predicting the effects of human activities on changes in extreme temperature variability and for adaptation to these changes in the future.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 6","pages":"Pages 989-1002"},"PeriodicalIF":6.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824001564","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The extreme temperature range (ETR) is the span between the highest and lowest temperature of a given year, and is a manifestation of extreme temperature variability. It is regarded as having significant environmental and societal impacts, but the influences of human activities on changes in the ETR remain unclear. Here we performed a detection and attribution analysis of the changes in the ETR over the land areas of the Northern Hemisphere (NH) for the period 1960–2018, based on the optimal fingerprinting approach. We found that anthropogenic forcing could be detected and separated from natural forcing, and greenhouse gas forcing could be detected and separated from anthropogenic aerosol forcing, in the spatiotemporal pattern of the NH and in the regional average of the high latitudes. It is estimated that anthropogenic forcing (greenhouse gas emissions) contributed to 129% (152%) of the significant decreasing trend in the NH-averaged ETR. Moreover, compared to the average of 1999–2018, the NH (North America)-averaged ETR was projected to further significantly decrease by 6.7 °C (14.0 °C) in 2081–2100 under the SSP5-8.5 scenario, based on attribution-constrained projection, the magnitude of which was larger than in the models’ raw outputs. In contrast, the ETR was projected to increase significantly in the Mediterranean and adjacent regions under the SSP5-8.5 scenario, and in Central Europe, West Africa, Central Asia, South Asia, and parts of China under the SSP1-1.9 scenario. These results have important implications for understanding and predicting the effects of human activities on changes in extreme temperature variability and for adaptation to these changes in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Climate Change Research
Advances in Climate Change Research Earth and Planetary Sciences-Atmospheric Science
CiteScore
9.80
自引率
4.10%
发文量
424
审稿时长
107 days
期刊介绍: Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change. Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.
期刊最新文献
Editorial Board Decoupling effect and influencing factors of carbon emissions in China: Based on production, consumption, and income responsibilities Thermal enhancement of targeted cooling thermosyphon array applied to the embankment–bridge transition section of the Qinghai–Tibet Railway in warm permafrost An integrated assessment of technological pathways and socioeconomic impacts for sustainable power system transition in Indonesia Representative CO2 emissions pathways for China's provinces toward carbon neutrality under the Paris Agreement's 2 °C target
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1