Reducing the interfacial thermal resistance between liquid crystal epoxy and hexagonal boron nitride: An investigation from molecular dynamics simulations at the atomic level to macroscopic properties
Xiao Yan Pang , Ze Ping Zhang , Fei Liang , Shule Liu , Min Zhi Rong , Ming Qiu Zhang
{"title":"Reducing the interfacial thermal resistance between liquid crystal epoxy and hexagonal boron nitride: An investigation from molecular dynamics simulations at the atomic level to macroscopic properties","authors":"Xiao Yan Pang , Ze Ping Zhang , Fei Liang , Shule Liu , Min Zhi Rong , Ming Qiu Zhang","doi":"10.1016/j.compositesa.2025.108766","DOIUrl":null,"url":null,"abstract":"<div><div>To gain a profound understanding of the interfacial heat transport mechanisms in hexagonal boron nitride (h-BN)/liquid crystal epoxy (LCE) composites, the theoretical simulation and experimental validation approaches are combined for clarifying the relationship between interfacial microstructure, interfacial thermal resistance (ITR) and macroscopic thermal conductivities of the h-BN/LCE composites. Molecular dynamics simulations (MD) show that LCE molecules can be closely packed on the h-BN surface to lower the ITR by 21 %∼42 %, in comparation to that of amorphous epoxy. Afterwards, the interfacial interactions between h-BN and LCE, and the interface phase thickness (2.305 nm) are experimentally confirmed. Meantime, the reduced ITR are examined to be 15 ∼ 65 % via laser flash method. The produced h-BN/linear LCE composites containing 95 wt% h-BN platelets exhibit excellent in-plane and through plane thermal conductivities up to 77.01 and 12.67 W m<sup>−1</sup> K<sup>−1</sup>, which exceed 25.8 % and 55.8 % those of the amorphous epoxy composite. It proves that the mesogens adsorbed on h-BN surface provides a straightforward approach to reduce ITR and enhance thermal conductivities of resultant composites. Besides, non-covalent and covalent modifications of h-BN allow to further diminish the ITR and facilitate heat transfer. The outcomes are believed to promote the application of h-BN/LCE composites in thermal management materials.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"192 ","pages":"Article 108766"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25000600","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
To gain a profound understanding of the interfacial heat transport mechanisms in hexagonal boron nitride (h-BN)/liquid crystal epoxy (LCE) composites, the theoretical simulation and experimental validation approaches are combined for clarifying the relationship between interfacial microstructure, interfacial thermal resistance (ITR) and macroscopic thermal conductivities of the h-BN/LCE composites. Molecular dynamics simulations (MD) show that LCE molecules can be closely packed on the h-BN surface to lower the ITR by 21 %∼42 %, in comparation to that of amorphous epoxy. Afterwards, the interfacial interactions between h-BN and LCE, and the interface phase thickness (2.305 nm) are experimentally confirmed. Meantime, the reduced ITR are examined to be 15 ∼ 65 % via laser flash method. The produced h-BN/linear LCE composites containing 95 wt% h-BN platelets exhibit excellent in-plane and through plane thermal conductivities up to 77.01 and 12.67 W m−1 K−1, which exceed 25.8 % and 55.8 % those of the amorphous epoxy composite. It proves that the mesogens adsorbed on h-BN surface provides a straightforward approach to reduce ITR and enhance thermal conductivities of resultant composites. Besides, non-covalent and covalent modifications of h-BN allow to further diminish the ITR and facilitate heat transfer. The outcomes are believed to promote the application of h-BN/LCE composites in thermal management materials.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.