Tianyi Zhu , Zeyu Ren , Debao Wang , Sudan Zhao , Xue Liu , Wei Fan , Yue-E Miao , Chao Zhang , Tianxi Liu
{"title":"Reactive 3D printed silanized cellulose nanofiber aerogels for solar-thermal regulatory cooling","authors":"Tianyi Zhu , Zeyu Ren , Debao Wang , Sudan Zhao , Xue Liu , Wei Fan , Yue-E Miao , Chao Zhang , Tianxi Liu","doi":"10.1016/j.compositesa.2025.108761","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer aerogels exhibit promise as solar-thermal co-management materials, offering combined thermal insulation and solar scattering characteristics. However, challenges persist in their large-scale preparation and pore structure tailoring. Herein, a polymethylsilsesquioxane interwoven cellulose nanofiber aerogel scaffold with improved interlayer interfaces and tunable pore sizes is prepared via reactive 3D printing. The resulting 3D-printed aerogel scaffold exhibits minimal volume shrinkage during freeze-drying and significantly enhanced interlayer interfaces, demonstrating superior fatigue resistance and impressive environmental resilience. The significantly decreased pore sizes in the aerogel scaffold greatly enhance full solar scattering through the Mie scattering mechanism. Utilized as a hydrophobic and flame-retardant solar–thermal regulatory cooler, the aerogel scaffold demonstrates a solar reflectance of 94.2 % and an atmospheric window emissivity of 95.6 %. The aerogel scaffold achieves a cooling power of 72.2 W m<sup>−2</sup> with an average sub-ambient cooling of 5.8 °C under direct sunlight.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"192 ","pages":"Article 108761"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25000557","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer aerogels exhibit promise as solar-thermal co-management materials, offering combined thermal insulation and solar scattering characteristics. However, challenges persist in their large-scale preparation and pore structure tailoring. Herein, a polymethylsilsesquioxane interwoven cellulose nanofiber aerogel scaffold with improved interlayer interfaces and tunable pore sizes is prepared via reactive 3D printing. The resulting 3D-printed aerogel scaffold exhibits minimal volume shrinkage during freeze-drying and significantly enhanced interlayer interfaces, demonstrating superior fatigue resistance and impressive environmental resilience. The significantly decreased pore sizes in the aerogel scaffold greatly enhance full solar scattering through the Mie scattering mechanism. Utilized as a hydrophobic and flame-retardant solar–thermal regulatory cooler, the aerogel scaffold demonstrates a solar reflectance of 94.2 % and an atmospheric window emissivity of 95.6 %. The aerogel scaffold achieves a cooling power of 72.2 W m−2 with an average sub-ambient cooling of 5.8 °C under direct sunlight.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.