Synthetic seismic data generation with pix2pix for enhanced fault detection model training

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2025-01-31 DOI:10.1016/j.cageo.2025.105879
Byunghoon Choi , Sukjoon Pyun , Woochang Choi , Yongchae Cho
{"title":"Synthetic seismic data generation with pix2pix for enhanced fault detection model training","authors":"Byunghoon Choi ,&nbsp;Sukjoon Pyun ,&nbsp;Woochang Choi ,&nbsp;Yongchae Cho","doi":"10.1016/j.cageo.2025.105879","DOIUrl":null,"url":null,"abstract":"<div><div>Manual fault interpretation from seismic data is time-consuming and subjective, often yielding inconsistent results. While attribute-based methods improve efficiency, they have limitations. Deep learning has emerged as a promising approach to address these challenges, but acquiring sufficient labeled data is difficult and costly. Synthetic data offers a solution, enabling easier labeling, scalability, and freedom from biases. It can be used alongside field data for pre-training or exclusively for model training. Optimizing synthetic data generation is crucial for effective fault interpretation. Previous studies have explored optimization using style transfer or generative models, which still involve numerical modeling and post-processing steps. In this study, we employ the pix2pix model to generate seismic sections for fault detection, integrating it with sketch-based modeling. Pix2pix is an image-to-image translation model within a conditional generative adversarial networks framework, tailored to the user needs by using images as conditional variables. We experiment with our proposed method using field data examples from the Netherlands Offshore F3 Block and the Thebe Gas Field. Our approach successfully replicates texture-related attributes, including noise, frequency, and amplitude, to resemble field data, thereby facilitating fault interpretation. We provide insights from variations in seismic data and fault interpretation results based on four sketch generation methods and loss function weights of pix2pix. Our approach offers notable advantages, reducing the need for extensive modeling and data processing, thereby streamlining field data analysis in generating optimal seismic sections for fault detection. It is particularly effective when the structural characteristics of reflectivity sketches closely match those of field data. Future research will focus on enhancing geological model production to capture structural characteristics of field data more effectively.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"197 ","pages":"Article 105879"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300425000299","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Manual fault interpretation from seismic data is time-consuming and subjective, often yielding inconsistent results. While attribute-based methods improve efficiency, they have limitations. Deep learning has emerged as a promising approach to address these challenges, but acquiring sufficient labeled data is difficult and costly. Synthetic data offers a solution, enabling easier labeling, scalability, and freedom from biases. It can be used alongside field data for pre-training or exclusively for model training. Optimizing synthetic data generation is crucial for effective fault interpretation. Previous studies have explored optimization using style transfer or generative models, which still involve numerical modeling and post-processing steps. In this study, we employ the pix2pix model to generate seismic sections for fault detection, integrating it with sketch-based modeling. Pix2pix is an image-to-image translation model within a conditional generative adversarial networks framework, tailored to the user needs by using images as conditional variables. We experiment with our proposed method using field data examples from the Netherlands Offshore F3 Block and the Thebe Gas Field. Our approach successfully replicates texture-related attributes, including noise, frequency, and amplitude, to resemble field data, thereby facilitating fault interpretation. We provide insights from variations in seismic data and fault interpretation results based on four sketch generation methods and loss function weights of pix2pix. Our approach offers notable advantages, reducing the need for extensive modeling and data processing, thereby streamlining field data analysis in generating optimal seismic sections for fault detection. It is particularly effective when the structural characteristics of reflectivity sketches closely match those of field data. Future research will focus on enhancing geological model production to capture structural characteristics of field data more effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Editorial Board ScoreInver: 3D seismic impedance inversion based on scoring mechanism Hybrid Newton method for the acceleration of well event handling in the simulation of CO2 storage using supervised learning Linear filter theory for the forward Laplace transform and its use in calculating 1D EM responses Deep learning contribution to the automatic picking of surface-wave dispersion for the characterization of railway earthworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1