Biochar-derived dissolved organic matter (BDOM) shifts fungal community composition: BDOM-soil DOM interaction

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE Applied Soil Ecology Pub Date : 2025-02-07 DOI:10.1016/j.apsoil.2025.105916
Muhammad Azeem , Jian Wang , Jean J. Kubwimana , Syed S.H. Kazmi , Zulqarnain H. Khan , Kaiwen He , Ruixia Han
{"title":"Biochar-derived dissolved organic matter (BDOM) shifts fungal community composition: BDOM-soil DOM interaction","authors":"Muhammad Azeem ,&nbsp;Jian Wang ,&nbsp;Jean J. Kubwimana ,&nbsp;Syed S.H. Kazmi ,&nbsp;Zulqarnain H. Khan ,&nbsp;Kaiwen He ,&nbsp;Ruixia Han","doi":"10.1016/j.apsoil.2025.105916","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar-derived dissolved organic matter (BDOM is a highly reactive proportion of biochar, which can affect the microbial community composition in soil. Despite this, the mechanisms by which BDOM influences soil fungal communities and DOM dynamics remain poorly understood, limiting its effective application in soil management practices. In a microcosm experiment, we investigated the direct effect of biochar-derived dissolved organic matter (BDOM), instead of solid biochar matrix, on the fungal community composition, soil nutrient bioavailability, and soil dissolved organic matter (SDOM). The BDOM was derived from bone, plant, and manure and generated at low and high pyrolysis temperatures (LPT, HPT). LPT-derived BDOM revealed higher BDOM contents in the following order: rice husk (RB) &gt; rabbit manure (MB) &gt; sheep bone (SB) compared with HPT, causing higher SDOM contents in the soil. Fungal diversity indices were reduced, particularly with MB-derived BDOM. A significant shift in microbial taxonomy was observed at both the phylum and genus levels with the addition of BDOM. A higher abundance of Mortierellomycota (1.98-fold increase), Basidiomycota (1.39-fold increase), and Chytridiomycota (2.61-fold increase) was noticed with all added BDOM, except for MB-derived BDOM, compared to no BDOM addition. At LPT, the higher abundance of Mortierellomycota was linked to increased phosphorus availability in the order of SB400 &gt; MB400 &gt; RB400, compared to the control. Higher values of fluorescence (Flul), freshness (FrI), biological (BIX), and humification (HIX) indices were associated with LPT-derived BDOM, particularly SB-derived BDOM, while HIX was notably enhanced with MB-derived BDOM. These findings revealed that BDOM-induced changes in SDOM and its interaction with the fungal microbiome play a key role in soil organic matter dynamics, nutrient cycling, and soil quality.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"207 ","pages":"Article 105916"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092913932500054X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Biochar-derived dissolved organic matter (BDOM is a highly reactive proportion of biochar, which can affect the microbial community composition in soil. Despite this, the mechanisms by which BDOM influences soil fungal communities and DOM dynamics remain poorly understood, limiting its effective application in soil management practices. In a microcosm experiment, we investigated the direct effect of biochar-derived dissolved organic matter (BDOM), instead of solid biochar matrix, on the fungal community composition, soil nutrient bioavailability, and soil dissolved organic matter (SDOM). The BDOM was derived from bone, plant, and manure and generated at low and high pyrolysis temperatures (LPT, HPT). LPT-derived BDOM revealed higher BDOM contents in the following order: rice husk (RB) > rabbit manure (MB) > sheep bone (SB) compared with HPT, causing higher SDOM contents in the soil. Fungal diversity indices were reduced, particularly with MB-derived BDOM. A significant shift in microbial taxonomy was observed at both the phylum and genus levels with the addition of BDOM. A higher abundance of Mortierellomycota (1.98-fold increase), Basidiomycota (1.39-fold increase), and Chytridiomycota (2.61-fold increase) was noticed with all added BDOM, except for MB-derived BDOM, compared to no BDOM addition. At LPT, the higher abundance of Mortierellomycota was linked to increased phosphorus availability in the order of SB400 > MB400 > RB400, compared to the control. Higher values of fluorescence (Flul), freshness (FrI), biological (BIX), and humification (HIX) indices were associated with LPT-derived BDOM, particularly SB-derived BDOM, while HIX was notably enhanced with MB-derived BDOM. These findings revealed that BDOM-induced changes in SDOM and its interaction with the fungal microbiome play a key role in soil organic matter dynamics, nutrient cycling, and soil quality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
期刊最新文献
Litter removal and nitrogen deposition alter soil microbial community composition and diversity in a typical rubber (Hevea brasiliensis) plantation of Hainan, China Soil fauna in agroforestry contributes to the suppressiveness to plant-parasitic nematodes: A case study in a Mediterranean area Influence of recycled organic waste amendments on carbon pools, greenhouse gas emissions, and nematode indicators of soil health Spatial dynamics of soil algae: Insights into abundance, community structure, and ecological roles in mixed biocrusts across China Soil-dependent fate of Klebsiella pneumoniae and Listeria monocytogenes after incorporation of digestates in soil microcosms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1