Modulation of pore structure in SiC porous ceramics: Impact of SiC powder particle size and distribution span

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2025-02-07 DOI:10.1016/j.matchemphys.2025.130504
Xinjian Ke , Jinhua Zhang , Qingqing Jin , Yu'e Ni , Jingran Wang , Hongdan Wu
{"title":"Modulation of pore structure in SiC porous ceramics: Impact of SiC powder particle size and distribution span","authors":"Xinjian Ke ,&nbsp;Jinhua Zhang ,&nbsp;Qingqing Jin ,&nbsp;Yu'e Ni ,&nbsp;Jingran Wang ,&nbsp;Hongdan Wu","doi":"10.1016/j.matchemphys.2025.130504","DOIUrl":null,"url":null,"abstract":"<div><div>According to particle packing theory, SiC porous ceramics with tailored porosity and pore dimensions can be fabricated by modifying the particle size and distribution range of SiC powder via the pressureless sintering method. The density of the green body formed under uniaxial pressure markedly diminishes with a reduction in particle packing density, while the apparent porosity of the SiC porous ceramics produced through high-temperature sintering significantly increases, resulting in a substantial enhancement of pure water flux. The increased span of SiC particle size distribution allows fine particles to efficiently occupy the interstices between larger particles, enhancing the densification of both the green and sintered bodies. Concurrently, the fine particles refine the pore size by filling larger voids; however, this results in a reduction of pure water flux. A reduction in particle size can lead to a drop in pore size of SiC porous ceramics when the particle size distribution range is comparable.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"334 ","pages":"Article 130504"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425001506","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

According to particle packing theory, SiC porous ceramics with tailored porosity and pore dimensions can be fabricated by modifying the particle size and distribution range of SiC powder via the pressureless sintering method. The density of the green body formed under uniaxial pressure markedly diminishes with a reduction in particle packing density, while the apparent porosity of the SiC porous ceramics produced through high-temperature sintering significantly increases, resulting in a substantial enhancement of pure water flux. The increased span of SiC particle size distribution allows fine particles to efficiently occupy the interstices between larger particles, enhancing the densification of both the green and sintered bodies. Concurrently, the fine particles refine the pore size by filling larger voids; however, this results in a reduction of pure water flux. A reduction in particle size can lead to a drop in pore size of SiC porous ceramics when the particle size distribution range is comparable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Controllable synthesis of 3D porous MXene/polypyrrole/Fe3O4 with magnetically tunable pore structures for electromagnetic wave absorption Novel red-emitting CDs@LaCaAl3O7:Eu3+ nanocomposites: A sustainable breakthrough for optical thermometry, indoor plant growth and intelligent security labels Mechanistic insights into high-performance and selective Cd(II) detection using Ag2WO4 nanoparticle-based electrochemical sensors for real-world applications Morphology evolution of Fe-doped V2O5 flower-like microspheres for H2S adsorption Electro-photovoltaics of grignard metathesis-derived poly(propylene imine) tetra(salicylaldimine)-co-poly(3-hexylthiophene-2,5-diyl) copolymer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1