Hyun-Haeng Lee , Jun-Seok Ro , Kwan-Nyeong Kim , Hea-Lim Park , Tae-Woo Lee
{"title":"Exploring photosensitive nanomaterials and optoelectronic synapses for neuromorphic artificial vision","authors":"Hyun-Haeng Lee , Jun-Seok Ro , Kwan-Nyeong Kim , Hea-Lim Park , Tae-Woo Lee","doi":"10.1016/j.cossms.2025.101215","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial vision systems will be essential in intelligent machine-vision applications such as autonomous vehicles, bionic eyes, and humanoid robot eyes. However, conventional digital electronics in these systems face limitations in system complexity, processing speed, and energy consumption. These challenges have been addressed by biomimetic approaches utilizing optoelectronic synapses inspired by the biological synapses in the eye. Nanomaterials can confine photogenerated charge carriers within nano-sized regions, and thus offer significant potential for optoelectronic synapses to perform in-sensor image-processing tasks, such as classifying static multicolor images and detecting dynamic object movements. We introduce recent developments in optoelectronic synapses, focusing on use of photosensitive nanomaterials. We also explore applications of these synapses in recognizing static and dynamic optical information. Finally, we suggest future directions for research on optoelectronic synapses to implement neuromorphic artificial vision.</div></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"35 ","pages":"Article 101215"},"PeriodicalIF":12.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028625000026","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial vision systems will be essential in intelligent machine-vision applications such as autonomous vehicles, bionic eyes, and humanoid robot eyes. However, conventional digital electronics in these systems face limitations in system complexity, processing speed, and energy consumption. These challenges have been addressed by biomimetic approaches utilizing optoelectronic synapses inspired by the biological synapses in the eye. Nanomaterials can confine photogenerated charge carriers within nano-sized regions, and thus offer significant potential for optoelectronic synapses to perform in-sensor image-processing tasks, such as classifying static multicolor images and detecting dynamic object movements. We introduce recent developments in optoelectronic synapses, focusing on use of photosensitive nanomaterials. We also explore applications of these synapses in recognizing static and dynamic optical information. Finally, we suggest future directions for research on optoelectronic synapses to implement neuromorphic artificial vision.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field