Daniel Ovalle , David A. Liñán , Albert Lee , Jorge M. Gómez , Luis Ricardez-Sandoval , Ignacio E. Grossmann , David E. Bernal Neira
{"title":"Logic-Based Discrete-Steepest Descent: A solution method for process synthesis Generalized Disjunctive Programs","authors":"Daniel Ovalle , David A. Liñán , Albert Lee , Jorge M. Gómez , Luis Ricardez-Sandoval , Ignacio E. Grossmann , David E. Bernal Neira","doi":"10.1016/j.compchemeng.2024.108993","DOIUrl":null,"url":null,"abstract":"<div><div>Optimization of chemical processes is challenging due to nonlinearities arising from chemical principles and discrete design decisions. The optimal synthesis and design of chemical processes can be posed as a Generalized Disjunctive Programming (GDP) problem. While reformulating GDP problems as Mixed-Integer Nonlinear Programming (MINLP) problems is common, specialized algorithms for GDP remain scarce. This study introduces the Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involving ordered Boolean variables. LD-SDA transforms these variables into external integer decisions and uses a two-level decomposition: the upper-level sets external configurations, and the lower-level solves the remaining variables, efficiently exploiting the GDP structure. In the case studies presented in this work, including batch processing, reactor superstructures, and distillation columns, LD-SDA consistently outperforms conventional GDP and MINLP solvers, especially as the problem size grows. LD-SDA also proves superior when solving challenging problems where other solvers encounter difficulties finding optimal solutions.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"195 ","pages":"Article 108993"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424004113","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Optimization of chemical processes is challenging due to nonlinearities arising from chemical principles and discrete design decisions. The optimal synthesis and design of chemical processes can be posed as a Generalized Disjunctive Programming (GDP) problem. While reformulating GDP problems as Mixed-Integer Nonlinear Programming (MINLP) problems is common, specialized algorithms for GDP remain scarce. This study introduces the Logic-Based Discrete-Steepest Descent Algorithm (LD-SDA) as a solution method for GDP problems involving ordered Boolean variables. LD-SDA transforms these variables into external integer decisions and uses a two-level decomposition: the upper-level sets external configurations, and the lower-level solves the remaining variables, efficiently exploiting the GDP structure. In the case studies presented in this work, including batch processing, reactor superstructures, and distillation columns, LD-SDA consistently outperforms conventional GDP and MINLP solvers, especially as the problem size grows. LD-SDA also proves superior when solving challenging problems where other solvers encounter difficulties finding optimal solutions.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.