{"title":"The influence of spin in black hole triplets","authors":"A. Chitan , A. Mylläri , M. Valtonen","doi":"10.1016/j.ascom.2025.100933","DOIUrl":null,"url":null,"abstract":"<div><div>Spin can influence the dynamics of the already chaotic black hole triplet system. We follow this problem in two sets of simulations: first, the Agekian–Anosova region (or region D), and second, using Pythagorean triangles. We use ARCcode, an N-body code that performs numerical integration of orbits. This code includes post-Newtonian corrections, which we include up to the 2.5th order. In set one of our simulations, we fix the masses of the black holes at 10<sup>6</sup> M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>. Then we run the simulations first without any spin added and after by initialising spin on one of the black holes. We find that after including spin into the system, 12.9% of the simulations changed outcomes. Either the systems went from having all black holes merging to having a black hole escaping the system, or vice versa. In the second set of simulations, we expanded into Pythagorean triangles as initial positions of black holes, stemming from Burrau’s three-body problem. We varied the masses of the black holes from 10<sup>0</sup> M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>–10<sup>12</sup> M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>. Black holes in these systems were given spin in normalised units ranging from 0 to <span><math><mo>∼</mo></math></span> 0.95. We find that intermediate mass black holes in the range of 10<sup>4</sup> M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>–10<sup>5</sup> M<span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, were influenced the most by spin, particularly in their lifetimes. We also find that simulations, initialised as 2-dimensional, become 3-dimensional.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"51 ","pages":"Article 100933"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221313372500006X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Spin can influence the dynamics of the already chaotic black hole triplet system. We follow this problem in two sets of simulations: first, the Agekian–Anosova region (or region D), and second, using Pythagorean triangles. We use ARCcode, an N-body code that performs numerical integration of orbits. This code includes post-Newtonian corrections, which we include up to the 2.5th order. In set one of our simulations, we fix the masses of the black holes at 106 M. Then we run the simulations first without any spin added and after by initialising spin on one of the black holes. We find that after including spin into the system, 12.9% of the simulations changed outcomes. Either the systems went from having all black holes merging to having a black hole escaping the system, or vice versa. In the second set of simulations, we expanded into Pythagorean triangles as initial positions of black holes, stemming from Burrau’s three-body problem. We varied the masses of the black holes from 100 M–1012 M. Black holes in these systems were given spin in normalised units ranging from 0 to 0.95. We find that intermediate mass black holes in the range of 104 M–105 M, were influenced the most by spin, particularly in their lifetimes. We also find that simulations, initialised as 2-dimensional, become 3-dimensional.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.