Qiangqiang Zheng , Pingfeng Li , Ying Xu , Bing Cheng , Hao Hu , Hao Shi , Shoudong Xie
{"title":"Crack propagation and CT imaging of internal cracks in rocks damaged by pre-compression under explosive loading","authors":"Qiangqiang Zheng , Pingfeng Li , Ying Xu , Bing Cheng , Hao Hu , Hao Shi , Shoudong Xie","doi":"10.1016/j.asej.2025.103302","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the dynamic crack propagation mechanism in damaged rocks under blasting excavation in complex geological conditions. A novel rock fracture analysis method based on pre-compression-induced random damage is proposed, overcoming the limitations of traditional prefabricated crack models. Innovatively, multi-level cyclic static pre-compression is applied to simulate the random damage distribution in engineering-scale rocks, combined with high-resolution computed tomography (CT) imaging to achieve non-destructive 3D visualization of internal crack morphologies under explosive loading. A theoretical model for predicting blast-induced crack propagation radius in damaged sandstone is established and validated through integrated laboratory blast experiments, CT scanning, and PFC-2D numerical simulations, demonstrating a prediction error margin below 5%. Key findings reveal a significant positive correlation between sandstone damage levels and the expansion range of blast-induced cracks as well as crater dimensions. The pre-existing crack network in damaged rocks effectively guides gas wedging effects, unveiling a “weakening-synergistic fracturing” dual mechanism. These results provide theoretical foundations and technical support for optimizing blasting parameters and mitigating dynamic disasters in tunnel engineering under complex geological settings.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 3","pages":"Article 103302"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000437","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the dynamic crack propagation mechanism in damaged rocks under blasting excavation in complex geological conditions. A novel rock fracture analysis method based on pre-compression-induced random damage is proposed, overcoming the limitations of traditional prefabricated crack models. Innovatively, multi-level cyclic static pre-compression is applied to simulate the random damage distribution in engineering-scale rocks, combined with high-resolution computed tomography (CT) imaging to achieve non-destructive 3D visualization of internal crack morphologies under explosive loading. A theoretical model for predicting blast-induced crack propagation radius in damaged sandstone is established and validated through integrated laboratory blast experiments, CT scanning, and PFC-2D numerical simulations, demonstrating a prediction error margin below 5%. Key findings reveal a significant positive correlation between sandstone damage levels and the expansion range of blast-induced cracks as well as crater dimensions. The pre-existing crack network in damaged rocks effectively guides gas wedging effects, unveiling a “weakening-synergistic fracturing” dual mechanism. These results provide theoretical foundations and technical support for optimizing blasting parameters and mitigating dynamic disasters in tunnel engineering under complex geological settings.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.