{"title":"Comparative study of packaging materials developed from fish and legume protein concentrates","authors":"Evmorfia Athanasopoulou , Angeliki Katsiroumpa , Chrysavgi Gardeli , Theofania Tsironi","doi":"10.1016/j.fufo.2025.100563","DOIUrl":null,"url":null,"abstract":"<div><div>The environmental impact of food packaging, transportation and disposal are escalating, contributing significantly to global solid waste. There's an increasing focus by industry and research on seeking new sustainable solutions for waste valorization. This study investigates the isolation process of biopolymers from legumes (lentil) products and fish (gilthead seabream) waste, with the aim of producing composite films. The developed films were characterized for optical, mechanical and water barrier properties, hydrophobicity (via contact angle measurement), moisture content, water solubility, and biodegradability. Results indicated that lentil and fish protein concentrates may be effectively utilized to fabricate biodegradable packaging materials with adequate moisture barrier properties and excellent optical characteristics. The composite materials from lentil proteins and pectin had higher elongation at break compared to the respective value of the films produced using fish protein and gelatin (44.94 ± 2.81 % and 10.52 ± 1.21 %, respectively). Regarding the composite animal based film, the WVTR and WVP values were measured at 119.50 ± 2.90 g × s<sup>−1</sup> × m<sup>−2</sup> and 5.04±0.06 × 10<sup>−8</sup> × g × m<sup>−1</sup> × s-<sup>1</sup>×Pa<sup>−1</sup>, respectively. The composite plant based materials had higher WVTR and WVP (139.17 ± 8.01 g × s<sup>−1</sup> × m<sup>−2</sup> and 7.80 ± 0.91 × 10<sup>−8</sup> × g × m<sup>−1</sup> × s-<sup>1</sup>×Pa<sup>−1</sup>, respectively). The composite film of pectin and concentrated lentil protein exhibited hydrophobic behavior (contact angle 98.63 ± 3.78°), whereas for gelatin and concentrated fish protein films, the contact angle was determined as 57.37 ± 4.00°, indicating hydrophilic behavior. All produced films biodegraded in <20 days during burial test in soil with high relative humidity (80 %). The results of the study show the utilization of food industry potential waste for producing environmentally friendly packaging materials.</div></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"11 ","pages":"Article 100563"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833525000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The environmental impact of food packaging, transportation and disposal are escalating, contributing significantly to global solid waste. There's an increasing focus by industry and research on seeking new sustainable solutions for waste valorization. This study investigates the isolation process of biopolymers from legumes (lentil) products and fish (gilthead seabream) waste, with the aim of producing composite films. The developed films were characterized for optical, mechanical and water barrier properties, hydrophobicity (via contact angle measurement), moisture content, water solubility, and biodegradability. Results indicated that lentil and fish protein concentrates may be effectively utilized to fabricate biodegradable packaging materials with adequate moisture barrier properties and excellent optical characteristics. The composite materials from lentil proteins and pectin had higher elongation at break compared to the respective value of the films produced using fish protein and gelatin (44.94 ± 2.81 % and 10.52 ± 1.21 %, respectively). Regarding the composite animal based film, the WVTR and WVP values were measured at 119.50 ± 2.90 g × s−1 × m−2 and 5.04±0.06 × 10−8 × g × m−1 × s-1×Pa−1, respectively. The composite plant based materials had higher WVTR and WVP (139.17 ± 8.01 g × s−1 × m−2 and 7.80 ± 0.91 × 10−8 × g × m−1 × s-1×Pa−1, respectively). The composite film of pectin and concentrated lentil protein exhibited hydrophobic behavior (contact angle 98.63 ± 3.78°), whereas for gelatin and concentrated fish protein films, the contact angle was determined as 57.37 ± 4.00°, indicating hydrophilic behavior. All produced films biodegraded in <20 days during burial test in soil with high relative humidity (80 %). The results of the study show the utilization of food industry potential waste for producing environmentally friendly packaging materials.
Future FoodsAgricultural and Biological Sciences-Food Science
CiteScore
8.60
自引率
0.00%
发文量
97
审稿时长
15 weeks
期刊介绍:
Future Foods is a specialized journal that is dedicated to tackling the challenges posed by climate change and the need for sustainability in the realm of food production. The journal recognizes the imperative to transform current food manufacturing and consumption practices to meet the dietary needs of a burgeoning global population while simultaneously curbing environmental degradation.
The mission of Future Foods is to disseminate research that aligns with the goal of fostering the development of innovative technologies and alternative food sources to establish more sustainable food systems. The journal is committed to publishing high-quality, peer-reviewed articles that contribute to the advancement of sustainable food practices.
Abstracting and indexing:
Scopus
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (ESCI)
SCImago Journal Rank (SJR)
SNIP