An efficient signal amplification strategy with low background based on a G-quadruplex-enriched DNA nanonetwork for ultrasensitive electrochemical detection of mucin 1
Rong Wang, Lingqi Kong, Mao Xia, Yaqin Chai, Ruo Yuan
{"title":"An efficient signal amplification strategy with low background based on a G-quadruplex-enriched DNA nanonetwork for ultrasensitive electrochemical detection of mucin 1","authors":"Rong Wang, Lingqi Kong, Mao Xia, Yaqin Chai, Ruo Yuan","doi":"10.1016/j.bios.2025.117204","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, a G-quadruplex-enriched DNA nanonetwork (GDN) self-assembled via Y-modules was designed to construct an ultrasensitive electrochemical biosensing platform with low background for the detection of mucin 1 related to cancers. The single-stranded DNA (ssDNA) S1 converted from target mucin 1 could hybridize with ssDNA S2 and ssDNA S3 with split G-quadruplex fragments at ends to form Y-modules and self-assemble into a GDN, which can capture abundant electroactive substance hemin for a significant electrochemical signal. Impressively, compared with conventional G-quadruplex nanowires with low loading capacity and poor structural stability, the GDN assembled by Y-modules was able to load more signaling probes and obtain a more stable structure for the support of G-quadruplexes, thereby outputting a stronger and more stable electrochemical signal. Moreover, a complete G-quadruplex assembled from two split G-quadruplex effectively reduced the background signal and thus improved the signal-to-noise ratio for the sensitive detection of mucin 1. As a result, the constructed electrochemical biosensor based on GDN achieved ultrasensitive detection of target mucin 1 with a detection limit down to 0.15 fg mL<sup>−1</sup> and was successfully applied to analyze mucin 1 in human serum samples, exhibiting great potential for protein biomarker analysis and clinical diagnosis of diseases.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"275 ","pages":"Article 117204"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325000788","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a G-quadruplex-enriched DNA nanonetwork (GDN) self-assembled via Y-modules was designed to construct an ultrasensitive electrochemical biosensing platform with low background for the detection of mucin 1 related to cancers. The single-stranded DNA (ssDNA) S1 converted from target mucin 1 could hybridize with ssDNA S2 and ssDNA S3 with split G-quadruplex fragments at ends to form Y-modules and self-assemble into a GDN, which can capture abundant electroactive substance hemin for a significant electrochemical signal. Impressively, compared with conventional G-quadruplex nanowires with low loading capacity and poor structural stability, the GDN assembled by Y-modules was able to load more signaling probes and obtain a more stable structure for the support of G-quadruplexes, thereby outputting a stronger and more stable electrochemical signal. Moreover, a complete G-quadruplex assembled from two split G-quadruplex effectively reduced the background signal and thus improved the signal-to-noise ratio for the sensitive detection of mucin 1. As a result, the constructed electrochemical biosensor based on GDN achieved ultrasensitive detection of target mucin 1 with a detection limit down to 0.15 fg mL−1 and was successfully applied to analyze mucin 1 in human serum samples, exhibiting great potential for protein biomarker analysis and clinical diagnosis of diseases.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.