Lotte Caarls , Faith Enigimi , Wendy P.C. van ’t Westende , Kas Swinkels , Wouter Kohlen , Gerard van der Linden , Ben Vosman
{"title":"Plant resistance to the whitefly Bemisia tabaci is compromised in salt-stressed Capsicum","authors":"Lotte Caarls , Faith Enigimi , Wendy P.C. van ’t Westende , Kas Swinkels , Wouter Kohlen , Gerard van der Linden , Ben Vosman","doi":"10.1016/j.envexpbot.2025.106101","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change has profound effects on crop production, for example through increasing temperatures, and more frequent extreme weather events. Climate change can also lead to increased pest pressure. How plants cope under double stress conditions is dependent on pest species, environment, and plant genotype, and for many plant-insect interactions, this knowledge is lacking. The whitefly <em>Bemisia tabaci</em> is an important pest worldwide and can be destructive for pepper (<em>Capsicum)</em> production. Breeding resistant varieties could aid in combatting whiteflies in a sustainable manner. In this study, we aimed to identify <em>Capsicum</em> accessions with resistance to <em>B. tabaci</em>, and study how this resistance was affected by salt stress. We grew 25 <em>Capsicum</em> accessions under salt treatment, and measured <em>B. tabaci</em> survival and oviposition. We identified four accessions with increased whitefly resistance, exhibited as higher adult mortality. Under salt stress, growth of most accessions was inhibited, and Na<sup>+</sup> accumulated in shoots. Importantly, in all plants that had experienced salt stress, whitefly survival and oviposition increased, essentially nullifying resistance in salt-stressed plants. When plants were treated with salt, the phytohormone jasmonic acid was reduced compared to whitefly-infested plants without salt, possibly resulting in reduced defense to whiteflies. The results of this study will contribute to a better understanding of pest resilient plants in a changing climate.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"231 ","pages":"Article 106101"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225000188","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change has profound effects on crop production, for example through increasing temperatures, and more frequent extreme weather events. Climate change can also lead to increased pest pressure. How plants cope under double stress conditions is dependent on pest species, environment, and plant genotype, and for many plant-insect interactions, this knowledge is lacking. The whitefly Bemisia tabaci is an important pest worldwide and can be destructive for pepper (Capsicum) production. Breeding resistant varieties could aid in combatting whiteflies in a sustainable manner. In this study, we aimed to identify Capsicum accessions with resistance to B. tabaci, and study how this resistance was affected by salt stress. We grew 25 Capsicum accessions under salt treatment, and measured B. tabaci survival and oviposition. We identified four accessions with increased whitefly resistance, exhibited as higher adult mortality. Under salt stress, growth of most accessions was inhibited, and Na+ accumulated in shoots. Importantly, in all plants that had experienced salt stress, whitefly survival and oviposition increased, essentially nullifying resistance in salt-stressed plants. When plants were treated with salt, the phytohormone jasmonic acid was reduced compared to whitefly-infested plants without salt, possibly resulting in reduced defense to whiteflies. The results of this study will contribute to a better understanding of pest resilient plants in a changing climate.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.