Effect of a bimetal Mn/Zn catalyst supported on activated carbon for selective oxidation of ethyl lactate to ethyl pyruvate

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2025-01-30 DOI:10.1016/j.cartre.2025.100472
G. Madhanagopal , K. Premalatha , P.N. Poovizhi , V. Sumithra , S. Mahalingam , L. Guganathan , S. Sivakumar , A. Subramani , P. Tamizhdurai
{"title":"Effect of a bimetal Mn/Zn catalyst supported on activated carbon for selective oxidation of ethyl lactate to ethyl pyruvate","authors":"G. Madhanagopal ,&nbsp;K. Premalatha ,&nbsp;P.N. Poovizhi ,&nbsp;V. Sumithra ,&nbsp;S. Mahalingam ,&nbsp;L. Guganathan ,&nbsp;S. Sivakumar ,&nbsp;A. Subramani ,&nbsp;P. Tamizhdurai","doi":"10.1016/j.cartre.2025.100472","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the conversion of ethyl lactate to ethyl pyruvate using a bar reactor. A novel heterogeneous catalyst, AC/Mn/Zn (manganese and zinc supported on mesoporous activated carbon), was synthesized using a cost-effective and efficient approach that prioritizes affordability and accessibility. This approach utilizes readily available starting materials and a streamlined process, making the AC/Mn/Zn catalyst commercially attractive for large-scale production. Furthermore, the synthesis minimizes the use of harmful chemicals and generates minimal waste, contributing to an environmentally friendly process that aligns with growing demands for sustainable production methods. Additionally, the straightforward procedures employed allow for simple and replicable catalyst production, ensuring consistent quality control. Following synthesis, various characterization techniques (XRD, TPD, BET, FT-IR, HR-SEM, HR-TEM) confirmed the successful formation of the AC/Mn/Zn catalyst with desired properties. The AC/Mn/Zn catalyst possessed a unique combination of Brønsted and Lewis acid sites, making it ideal for the target reaction. Reaction parameters were optimized, with a temperature of 90 °C, WHSV of 1.0 h<sup>−1</sup>, atmospheric pressure, and air as the oxidant being employed. The AC/Mn/Zn catalyst exhibited exceptional performance, achieving a remarkable 91 % conversion and 90 % selectivity for ethyl pyruvate, surpassing other investigated catalysts. This success is attributed to the well-designed structure incorporating zinc into the AC-supported manganese. Interestingly, the formation of additional acidic compounds beyond the desired reaction time was observed, suggesting potential side reactions. Further investigation into these side reactions is necessary for complete optimization. The AC/Mn/Zn catalyst offers a compelling combination of high performance, a cost-effective and environmentally friendly synthesis method, and straightforward production procedures. These factors highlight its potential as a promising candidate for industrial ethyl pyruvate production.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"19 ","pages":"Article 100472"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056925000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the conversion of ethyl lactate to ethyl pyruvate using a bar reactor. A novel heterogeneous catalyst, AC/Mn/Zn (manganese and zinc supported on mesoporous activated carbon), was synthesized using a cost-effective and efficient approach that prioritizes affordability and accessibility. This approach utilizes readily available starting materials and a streamlined process, making the AC/Mn/Zn catalyst commercially attractive for large-scale production. Furthermore, the synthesis minimizes the use of harmful chemicals and generates minimal waste, contributing to an environmentally friendly process that aligns with growing demands for sustainable production methods. Additionally, the straightforward procedures employed allow for simple and replicable catalyst production, ensuring consistent quality control. Following synthesis, various characterization techniques (XRD, TPD, BET, FT-IR, HR-SEM, HR-TEM) confirmed the successful formation of the AC/Mn/Zn catalyst with desired properties. The AC/Mn/Zn catalyst possessed a unique combination of Brønsted and Lewis acid sites, making it ideal for the target reaction. Reaction parameters were optimized, with a temperature of 90 °C, WHSV of 1.0 h−1, atmospheric pressure, and air as the oxidant being employed. The AC/Mn/Zn catalyst exhibited exceptional performance, achieving a remarkable 91 % conversion and 90 % selectivity for ethyl pyruvate, surpassing other investigated catalysts. This success is attributed to the well-designed structure incorporating zinc into the AC-supported manganese. Interestingly, the formation of additional acidic compounds beyond the desired reaction time was observed, suggesting potential side reactions. Further investigation into these side reactions is necessary for complete optimization. The AC/Mn/Zn catalyst offers a compelling combination of high performance, a cost-effective and environmentally friendly synthesis method, and straightforward production procedures. These factors highlight its potential as a promising candidate for industrial ethyl pyruvate production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Comparative evaluation of cationic and anionic dye removal using graphene oxide fabricated by Hummers and Couette-Taylor flow methods Electrospun polyvinylpyrrolidone fibers with cobalt ferrite nanoparticles Distinguishing physical vs. chemical templating mechanisms for inducing graphitization in novolac matrix Effect of a bimetal Mn/Zn catalyst supported on activated carbon for selective oxidation of ethyl lactate to ethyl pyruvate Experimental evidence of flexural phonons in low-temperature heat capacity of carbon nanotubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1