Muhammad Ramzy Altahhan , Nicholas Herring , Sebastian Schunert , Yousry Azmy
{"title":"Development and integration of a tool for physics-based shape and topology optimization in the MOOSE multiphysics simulation framework","authors":"Muhammad Ramzy Altahhan , Nicholas Herring , Sebastian Schunert , Yousry Azmy","doi":"10.1016/j.pnucene.2025.105619","DOIUrl":null,"url":null,"abstract":"<div><div>We developed a C++ computational tool for physics-based shape and topology optimization and integrated it into the MOOSE multiphysics simulation framework. The tool implements combinatorial and discrete optimization algorithms, and includes performance enhancements like solution caching, tabu lists, and multi-run restarts. We demonstrate the tool’s flexibility with two applications that utilize different MOOSE physics modules. We implemented a Simulated Annealing search engine in our new tool. The first application is novel, adopting a two-dimensional Cartesian geometry representation of a pin-cell aiming for the optimal distribution of fuel and moderator material on a fixed mesh that maximizes neutron multiplication and coolant’s hydraulic diameter. Constraints were applied to the search procedure, and we explored their effect on the realized optimal shape, identifying a set that includes preliminary manufacturability constraints and that produces a Cartesian approximation of annular fuel pins, previously proposed by physical intuition. The second is a traditional PWR fuel shuffling application at the full-core scale aiming at minimizing peak power over the core. This capability was not available in MOOSE and is used to illustrate the flexibility of our new optimization capability to address other types of discrete optimization demands. In our test case, we obtained a 1250 pcm improvement in the multiplication factor and a reduced assembly power peaking of more than 30% relative to the initial unoptimized state comprising an IAEA-2D benchmark-based core. The loading patterns generated were consistent with established literature. This work enables multi-scale reactor design improvements, from the individual fuel pin level to the full core level. Future work will leverage MOOSE’s multiphysics capabilities to execute coupled-physics optimization exercises.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"181 ","pages":"Article 105619"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197025000174","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a C++ computational tool for physics-based shape and topology optimization and integrated it into the MOOSE multiphysics simulation framework. The tool implements combinatorial and discrete optimization algorithms, and includes performance enhancements like solution caching, tabu lists, and multi-run restarts. We demonstrate the tool’s flexibility with two applications that utilize different MOOSE physics modules. We implemented a Simulated Annealing search engine in our new tool. The first application is novel, adopting a two-dimensional Cartesian geometry representation of a pin-cell aiming for the optimal distribution of fuel and moderator material on a fixed mesh that maximizes neutron multiplication and coolant’s hydraulic diameter. Constraints were applied to the search procedure, and we explored their effect on the realized optimal shape, identifying a set that includes preliminary manufacturability constraints and that produces a Cartesian approximation of annular fuel pins, previously proposed by physical intuition. The second is a traditional PWR fuel shuffling application at the full-core scale aiming at minimizing peak power over the core. This capability was not available in MOOSE and is used to illustrate the flexibility of our new optimization capability to address other types of discrete optimization demands. In our test case, we obtained a 1250 pcm improvement in the multiplication factor and a reduced assembly power peaking of more than 30% relative to the initial unoptimized state comprising an IAEA-2D benchmark-based core. The loading patterns generated were consistent with established literature. This work enables multi-scale reactor design improvements, from the individual fuel pin level to the full core level. Future work will leverage MOOSE’s multiphysics capabilities to execute coupled-physics optimization exercises.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.