{"title":"Investigation of geogrid-reinforced unbound granular material behavior using constant radial stiffness triaxial tests","authors":"Ziheng Wang, Yue Chen, Yuekai Xie, Jianfeng Xue","doi":"10.1016/j.geotexmem.2025.01.007","DOIUrl":null,"url":null,"abstract":"<div><div>A series of constant radial stiffness triaxial (CRST) tests were performed to investigate the long-term behavior of geogrid-reinforced unbound granular materials (UGMs). Two types of multi-stage cyclic loading tests were conducted with various vertical constant loads (<span><math><mrow><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>min</mi></mrow></msub></mrow></math></span>). In the first type, <span><math><mrow><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>min</mi></mrow></msub></mrow></math></span> was maintained at 10% of the maximum axial stress at each loading stage to determine the resilient modulus. The results indicated that the inclusion of geogrid increased the resilient modulus by 21–25 MPa under various cyclic loads. In the second type of tests, three tests were performed with <span><math><mrow><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>min</mi></mrow></msub></mrow></math></span> of 5, 10, and 20 kPa, respectively, to investigate the effects of vertical constant loads on the contributions of geogrids to the confining stress and permanent deformation. The results showed that the inclusion of geogrid mitigated permanent deformation by enhancing the confining stress. However, an adverse effect of the geogrid on permanent deformation was observed when <span><math><mrow><msub><mi>σ</mi><mrow><mn>1</mn><mo>,</mo><mi>min</mi></mrow></msub></mrow></math></span> was 5 kPa, which can be attributed to the loss of contact between the geogrid and aggregates. Furthermore, R-values and stress paths obtained in this study also demonstrated the capability of CRST tests in quantifying the effects of geogrids on UGMs under cyclic loadings.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 3","pages":"Pages 728-743"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114425000172","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A series of constant radial stiffness triaxial (CRST) tests were performed to investigate the long-term behavior of geogrid-reinforced unbound granular materials (UGMs). Two types of multi-stage cyclic loading tests were conducted with various vertical constant loads (). In the first type, was maintained at 10% of the maximum axial stress at each loading stage to determine the resilient modulus. The results indicated that the inclusion of geogrid increased the resilient modulus by 21–25 MPa under various cyclic loads. In the second type of tests, three tests were performed with of 5, 10, and 20 kPa, respectively, to investigate the effects of vertical constant loads on the contributions of geogrids to the confining stress and permanent deformation. The results showed that the inclusion of geogrid mitigated permanent deformation by enhancing the confining stress. However, an adverse effect of the geogrid on permanent deformation was observed when was 5 kPa, which can be attributed to the loss of contact between the geogrid and aggregates. Furthermore, R-values and stress paths obtained in this study also demonstrated the capability of CRST tests in quantifying the effects of geogrids on UGMs under cyclic loadings.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.