{"title":"Triple-stage crack detection in stone masonry using YOLO-ensemble, MobileNetV2U-net, and spectral clustering","authors":"Ali Mahmoud Mayya , Nizar Faisal Alkayem","doi":"10.1016/j.autcon.2025.106045","DOIUrl":null,"url":null,"abstract":"<div><div>Condition assessment of stone structures is crucial to maintain their durability. To improve the identification of stone cracks, a triple-stage framework for crack detection, segmentation, and decision-support clustering is proposed. The framework starts with an ensemble of state-of-the-art YOLO models to improve crack detection. The detected crack regions are then fed to an enhanced MobileNetV2U-Net for better crack localization. Thereafter, features are extracted from the detected and segmented stone crack regions, and the K-means and Spectral clustering are utilized to categorize crack patterns. Intensive experiments and detailed comparisons are performed to test the proposed approach. Finally, a user-friendly GUI is designed to simplify the complexity of the proposed framework. Results prove that the YOLO ensemble detector and MobileNetV2U-Net model exhibit the best performances based on statistical metrics. Moreover, it is proven that spectral clustering using five clusters applied to the detected-segmented crack patterns is the best-employed scenario.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"172 ","pages":"Article 106045"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525000858","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Condition assessment of stone structures is crucial to maintain their durability. To improve the identification of stone cracks, a triple-stage framework for crack detection, segmentation, and decision-support clustering is proposed. The framework starts with an ensemble of state-of-the-art YOLO models to improve crack detection. The detected crack regions are then fed to an enhanced MobileNetV2U-Net for better crack localization. Thereafter, features are extracted from the detected and segmented stone crack regions, and the K-means and Spectral clustering are utilized to categorize crack patterns. Intensive experiments and detailed comparisons are performed to test the proposed approach. Finally, a user-friendly GUI is designed to simplify the complexity of the proposed framework. Results prove that the YOLO ensemble detector and MobileNetV2U-Net model exhibit the best performances based on statistical metrics. Moreover, it is proven that spectral clustering using five clusters applied to the detected-segmented crack patterns is the best-employed scenario.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.