{"title":"Van der Waals heterostructures for advanced infrared photodetection: Innovations in stability and spectral range","authors":"Aditya Kushwaha , Manasvi Raj , Anshul , Rahul Kumar , Neeraj Goel","doi":"10.1016/j.mtnano.2025.100582","DOIUrl":null,"url":null,"abstract":"<div><div>Infrared (IR) photodetectors have gained significant attention in recent years due to their crucial role in a variety of applications, including night vision, military technology, communication, remote temperature sensing, and biomedical imaging. Conventional IR photodetector materials are widely used for commercial purposes and can operate at room temperature. However, they have limitations, including susceptibility to noise, complex manufacturing processes, and limited spectral response range, which restrict their suitability for diverse applications. The emergence of two-dimensional (2D) materials offers new opportunities for developing high-performance IR photodetectors due to their strong light-matter interaction, tunable bandgap, broad spectral response, and low power dissipation. Nevertheless, weak light absorption and short carrier lifetimes limit the use of individual 2D materials in IR photodetectors. This review highlights how van der Waals (vdW) heterostructures—formed by integrating 2D materials with other materials such as zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires (NWs), or bulk three-dimensional (3D) materials—can overcome these limitations, leading to enhanced IR photodetector performance. The vdW heterostructures allow for tunable spectral responses and flexible device configurations, which are unattainable with conventional semiconductors. This review discusses recent advancements in vdW heterostructure-based IR photodetectors, focusing on structural and architectural innovations necessary to meet the growing demand for intelligent, integrated, and multidimensional recognition systems. By examining novel combinations of 2D materials with other materials, this paper provides a pathway to improved stability, faster response times, and better ambient performance. This review also addresses challenges in integrating 2D materials with other structures and offers insights into future directions for developing high-performance IR photodetectors using vdW heterostructures, ultimately aiming to bridge gaps in current technology and push forward the boundaries of IR photodetection.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100582"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000136","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared (IR) photodetectors have gained significant attention in recent years due to their crucial role in a variety of applications, including night vision, military technology, communication, remote temperature sensing, and biomedical imaging. Conventional IR photodetector materials are widely used for commercial purposes and can operate at room temperature. However, they have limitations, including susceptibility to noise, complex manufacturing processes, and limited spectral response range, which restrict their suitability for diverse applications. The emergence of two-dimensional (2D) materials offers new opportunities for developing high-performance IR photodetectors due to their strong light-matter interaction, tunable bandgap, broad spectral response, and low power dissipation. Nevertheless, weak light absorption and short carrier lifetimes limit the use of individual 2D materials in IR photodetectors. This review highlights how van der Waals (vdW) heterostructures—formed by integrating 2D materials with other materials such as zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires (NWs), or bulk three-dimensional (3D) materials—can overcome these limitations, leading to enhanced IR photodetector performance. The vdW heterostructures allow for tunable spectral responses and flexible device configurations, which are unattainable with conventional semiconductors. This review discusses recent advancements in vdW heterostructure-based IR photodetectors, focusing on structural and architectural innovations necessary to meet the growing demand for intelligent, integrated, and multidimensional recognition systems. By examining novel combinations of 2D materials with other materials, this paper provides a pathway to improved stability, faster response times, and better ambient performance. This review also addresses challenges in integrating 2D materials with other structures and offers insights into future directions for developing high-performance IR photodetectors using vdW heterostructures, ultimately aiming to bridge gaps in current technology and push forward the boundaries of IR photodetection.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites