Regional gray matter thickness correlations of the hearing and deaf feline brains

Q4 Neuroscience Neuroimage. Reports Pub Date : 2025-02-08 DOI:10.1016/j.ynirp.2025.100239
Stephen G. Gordon , Alessandra Sacco , Stephen G. Lomber
{"title":"Regional gray matter thickness correlations of the hearing and deaf feline brains","authors":"Stephen G. Gordon ,&nbsp;Alessandra Sacco ,&nbsp;Stephen G. Lomber","doi":"10.1016/j.ynirp.2025.100239","DOIUrl":null,"url":null,"abstract":"<div><div>The overall function and associated structure of the brain changes dramatically following early-onset hearing loss in a process known as compensatory crossmodal plasticity. As the microscale changes to cerebral morphology driving these adaptations can be reflected macrostructurally in MRI analyses, high interregional correlations in features such as gray matter thickness are potentially indicative of functional relationships. To probe the changes in these associations following deafness using structure alone, perinatally-deafened and hearing control cats were scanned at 7T to obtain high-resolution T1-weighted images. After calculating regional thicknesses for 146 cortical areas, the 10,585 associated pairwise correlations were used to establish group-specific structural connectomes. Similar distributions of correlation strength were revealed between the two populations, however there was an overall increase in the density of the structurally-defined connectome following deafness. The connections demonstrating the most dramatic increases of correlational strength in the deprived group were those relating to the auditory and visual cortices, with a more balanced distribution of increases and decreases to connections involving solely non-sensory regions. In corroboration with previous feline structural- and diffusion-based neuroimaging literature, these results imply a reorganization of cortical gray matter to increase the overall processing of the remaining senses within a potentially less complex and more redundant connectome. The present study adds to the developing field of deafness literature through the implementation of novel analyses that add an additional perspective on neuroplasticity within the feline brain.</div></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"5 1","pages":"Article 100239"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666956025000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

The overall function and associated structure of the brain changes dramatically following early-onset hearing loss in a process known as compensatory crossmodal plasticity. As the microscale changes to cerebral morphology driving these adaptations can be reflected macrostructurally in MRI analyses, high interregional correlations in features such as gray matter thickness are potentially indicative of functional relationships. To probe the changes in these associations following deafness using structure alone, perinatally-deafened and hearing control cats were scanned at 7T to obtain high-resolution T1-weighted images. After calculating regional thicknesses for 146 cortical areas, the 10,585 associated pairwise correlations were used to establish group-specific structural connectomes. Similar distributions of correlation strength were revealed between the two populations, however there was an overall increase in the density of the structurally-defined connectome following deafness. The connections demonstrating the most dramatic increases of correlational strength in the deprived group were those relating to the auditory and visual cortices, with a more balanced distribution of increases and decreases to connections involving solely non-sensory regions. In corroboration with previous feline structural- and diffusion-based neuroimaging literature, these results imply a reorganization of cortical gray matter to increase the overall processing of the remaining senses within a potentially less complex and more redundant connectome. The present study adds to the developing field of deafness literature through the implementation of novel analyses that add an additional perspective on neuroplasticity within the feline brain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
期刊最新文献
Radiation-induced brain injury in non-human primates: A dual tracer PET study with [11C]MPC-6827 and [11C]PiB Practical scan-length considerations for mapping upper limb movements to the somatosensory/motor cortex at 7T: A pilot study Utilization of resting-state electroencephalography spectral power in convolutional neural networks for classification of primary progressive aphasia Brain topology and cognitive outcomes after cardiac arrest: A graph theoretical analysis of fMRI data The influence of post-processing methods and frequency bands on rs-fMRI: An example of electroacupuncture at Zusanli (ST36)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1