{"title":"Surface plasmon resonance biosensors for SARS-CoV-2 sensing: The role of silicon nitride and graphene","authors":"Talia Tene , Diana Coello-Fiallos , Myrian Borja , Narcisa Sánchez , Fabián Londo , Cristian Vacacela Gomez , Stefano Bellucci","doi":"10.1016/j.biosx.2025.100586","DOIUrl":null,"url":null,"abstract":"<div><div>We present a systematic optimization and analysis of SPR biosensors, focusing on the influence of design parameters such as silver (Ag), silicon nitride (Si₃N₄), graphene, and ssDNA layer thicknesses. Two configurations, Sys₃ and Sys₅, were developed and numerically evaluated under varying SARS-CoV-2 concentrations in PBS solution, ranging from 0.01 nM to 100 nM. Sys₃, optimized with Ag at 55 nm, Si₃N₄ at 13 nm, and ssDNA at 10 nm, demonstrated exceptional sensitivity (371.7°/RIU), low limit of detection, and high detection accuracy, making it suitable for precision applications. In contrast, Sys₅, incorporating a graphene layer (0.34 nm) alongside Ag at 50 nm, Si₃N₄ at 10 nm, and ssDNA at 10 nm, exhibited superior robustness and a higher figure of merit (2287.2 RIU⁻<sup>1</sup>), offering consistent performance across a broader dynamic range. These results highlight the versatility of SPR biosensors in adapting to diverse diagnostic needs.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"23 ","pages":"Article 100586"},"PeriodicalIF":10.6100,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
We present a systematic optimization and analysis of SPR biosensors, focusing on the influence of design parameters such as silver (Ag), silicon nitride (Si₃N₄), graphene, and ssDNA layer thicknesses. Two configurations, Sys₃ and Sys₅, were developed and numerically evaluated under varying SARS-CoV-2 concentrations in PBS solution, ranging from 0.01 nM to 100 nM. Sys₃, optimized with Ag at 55 nm, Si₃N₄ at 13 nm, and ssDNA at 10 nm, demonstrated exceptional sensitivity (371.7°/RIU), low limit of detection, and high detection accuracy, making it suitable for precision applications. In contrast, Sys₅, incorporating a graphene layer (0.34 nm) alongside Ag at 50 nm, Si₃N₄ at 10 nm, and ssDNA at 10 nm, exhibited superior robustness and a higher figure of merit (2287.2 RIU⁻1), offering consistent performance across a broader dynamic range. These results highlight the versatility of SPR biosensors in adapting to diverse diagnostic needs.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.