In situ CLSM observation of Austenite microstructural evolution during hot deformation

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialia Pub Date : 2025-02-05 DOI:10.1016/j.mtla.2025.102355
Abhishek Arya, Muhammad Nabeel, A.B. Phillion
{"title":"In situ CLSM observation of Austenite microstructural evolution during hot deformation","authors":"Abhishek Arya,&nbsp;Muhammad Nabeel,&nbsp;A.B. Phillion","doi":"10.1016/j.mtla.2025.102355","DOIUrl":null,"url":null,"abstract":"<div><div>In-situ observations of microstructure evolution during the thermomechanical processing of low-carbon steel have been carried out using a high-temperature tensile testing system (HiTTS) integrated with a confocal laser scanning microscope (CLSM). Experiments were conducted within the temperature range between 800 to 1200 °C, and employing a strain rate of 0.001<!--> <!-->s<sup>−1</sup> to analyze the evolution of austenite microstructure at different temperatures and to identify the deformation and restoration mechanisms. The findings suggest that at temperatures below 900 °C, planar slip is the dominant deformation mechanism, and slip transfer is more favorable at twin boundaries than at grain boundaries. On the other hand, dynamic recrystallization (DRX) is identified as the primary restoration mechanism above 900 °C. The study identifies various nucleation sites for DRX grains, with triple junctions and grain boundaries serving as the nucleation sites at 900 °C. As the temperature increases to 1000 °C and above, new nucleation sites, such as inside annealing twin boundaries and free twin ends, are observed. The microstructure results suggest that the morphology of the twin boundary changes and loses its character during deformation. The role of annealing twin boundaries on DRX and bulging mechanisms associated with the various nucleation sites are discussed in great detail. Finally, the operational details, including temperature variations along the gauge length and thermal profile adjustments, including overshooting and undershooting and high-temperature surface reactions such as oxidation, decarburization, and evaporation, are meticulously examined.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"39 ","pages":"Article 102355"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925000225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In-situ observations of microstructure evolution during the thermomechanical processing of low-carbon steel have been carried out using a high-temperature tensile testing system (HiTTS) integrated with a confocal laser scanning microscope (CLSM). Experiments were conducted within the temperature range between 800 to 1200 °C, and employing a strain rate of 0.001 s−1 to analyze the evolution of austenite microstructure at different temperatures and to identify the deformation and restoration mechanisms. The findings suggest that at temperatures below 900 °C, planar slip is the dominant deformation mechanism, and slip transfer is more favorable at twin boundaries than at grain boundaries. On the other hand, dynamic recrystallization (DRX) is identified as the primary restoration mechanism above 900 °C. The study identifies various nucleation sites for DRX grains, with triple junctions and grain boundaries serving as the nucleation sites at 900 °C. As the temperature increases to 1000 °C and above, new nucleation sites, such as inside annealing twin boundaries and free twin ends, are observed. The microstructure results suggest that the morphology of the twin boundary changes and loses its character during deformation. The role of annealing twin boundaries on DRX and bulging mechanisms associated with the various nucleation sites are discussed in great detail. Finally, the operational details, including temperature variations along the gauge length and thermal profile adjustments, including overshooting and undershooting and high-temperature surface reactions such as oxidation, decarburization, and evaporation, are meticulously examined.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
期刊最新文献
Friction Stir welding effects on the corrosion resistance of the 2098-T351 alloy Curvature of free-standing polycrystalline SiC thick films grown by CVD: On the origin of the residual stress gradient Metal passivation strengthens the interface in titanium composites reinforced with boron nitride nanotubes Effect of repetition passes in the laser surface texturing of AISI 301LN steel on the anticorrosion properties in molten carbonate salts In situ CLSM observation of Austenite microstructural evolution during hot deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1