Upconversion nanoparticle-based optical biosensor for early diagnosis of stroke

IF 10.7 1区 生物学 Q1 BIOPHYSICS Biosensors and Bioelectronics Pub Date : 2025-02-03 DOI:10.1016/j.bios.2025.117227
Pragati Kakkar , Tarun Kakkar , Padmaja Parameswaran Nampi , Gin Jose , Sikha Saha
{"title":"Upconversion nanoparticle-based optical biosensor for early diagnosis of stroke","authors":"Pragati Kakkar ,&nbsp;Tarun Kakkar ,&nbsp;Padmaja Parameswaran Nampi ,&nbsp;Gin Jose ,&nbsp;Sikha Saha","doi":"10.1016/j.bios.2025.117227","DOIUrl":null,"url":null,"abstract":"<div><div>Over 17 million people experience a stroke episode annually, with 5.9 million deaths. Stroke is diagnosed by physical tests and neuroimaging which need to be performed quickly to determine if the stroke is caused by ischaemia or haemorrhage. Neuroimaging can reliably confirm bleeding, but many patients with suspected ischaemic stroke (up to 40%) are subsequently confirmed to have alternative pathologies e.g., migraine or seizures (stroke mimics) delaying the transfer of stroke patients to an acute stroke unit for early intervention and treatment. Thus, a simple complimentary blood biomarker test to differentiate stroke patients from non-stroke patients with similar clinical symptoms is essential in prehospital and emergency settings for efficient stroke management and prompt treatment. The current 'Gold Standard' technique for detecting protein biomarkers is complex, time-consuming, and requires automated equipment. In this study, we have developed a proof-of-concept of lanthanide-doped upconversion nanoparticle (UCNP)-based optical biosensor platform for detecting glial fibrillary acidic protein (GFAP), a potential stroke biomarker, in human blood serum. The results show a linear response in photoluminescence quenching of UCNP conjugated GFAP antibody with the increasing concentration of GFAP biomarker in human blood serum. This approach can be used in the ambulance and Emergency Department to quickly diagnose a stroke. In the longer term, such techniques can be integrated into a self-assessment kit to monitor those patients who are at risk after strokes.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"275 ","pages":"Article 117227"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325001010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Over 17 million people experience a stroke episode annually, with 5.9 million deaths. Stroke is diagnosed by physical tests and neuroimaging which need to be performed quickly to determine if the stroke is caused by ischaemia or haemorrhage. Neuroimaging can reliably confirm bleeding, but many patients with suspected ischaemic stroke (up to 40%) are subsequently confirmed to have alternative pathologies e.g., migraine or seizures (stroke mimics) delaying the transfer of stroke patients to an acute stroke unit for early intervention and treatment. Thus, a simple complimentary blood biomarker test to differentiate stroke patients from non-stroke patients with similar clinical symptoms is essential in prehospital and emergency settings for efficient stroke management and prompt treatment. The current 'Gold Standard' technique for detecting protein biomarkers is complex, time-consuming, and requires automated equipment. In this study, we have developed a proof-of-concept of lanthanide-doped upconversion nanoparticle (UCNP)-based optical biosensor platform for detecting glial fibrillary acidic protein (GFAP), a potential stroke biomarker, in human blood serum. The results show a linear response in photoluminescence quenching of UCNP conjugated GFAP antibody with the increasing concentration of GFAP biomarker in human blood serum. This approach can be used in the ambulance and Emergency Department to quickly diagnose a stroke. In the longer term, such techniques can be integrated into a self-assessment kit to monitor those patients who are at risk after strokes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
期刊最新文献
Editorial Board Continuous glucose monitoring (CGM) system based on protein hydrogel anti-biofouling coating for long-term accurate and point-of-care glucose monitoring Self-powered wearable electrochemical sensor based on composite conductive hydrogel medium for detection of lactate in human sweat A nanoplasmonic cell-on-a-chip for in situ monitoring of PD-L1+ exosome-mediated immune modulation Real-time cardiomyocyte contraction sensing via a neo-flexible magnetic sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1