{"title":"A transferability-guided protein-ligand interaction prediction method","authors":"Weihong Zhang , Fan Hu , Peng Yin , Yunpeng Cai","doi":"10.1016/j.ymeth.2025.01.019","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of protein–ligand interaction (PLI) is crucial for drug discovery and development. However, existing methods often struggle with effectively integrating heterogeneous protein and ligand data modalities and optimizing knowledge transfer from pretraining to the target task. This paper proposes a novel transferability-guided PLI prediction method that maximizes knowledge transfer by deeply integrating protein and ligand representations through a cross-attention mechanism and incorporating transferability metrics to guide fine-tuning. The cross-attention mechanism facilitates interactive information exchange between modalities, enabling the model to capture intricate interdependencies. Meanwhile, the transferability-guided strategy quantifies transferability from pretraining tasks and incorporates it into the training objective, ensuring the effective utilization of beneficial knowledge while mitigating negative transfer. Extensive experiments demonstrate significant and consistent improvements over traditional fine-tuning, validated by statistical tests. Ablation studies highlight the pivotal role of cross-attention, and quantitative analysis reveals the method’s ability to reduce harmful transfer. Our guided strategy provides a paradigm for more comprehensive utilization of pretraining knowledge, offering prospects for enhancing other PLI prediction approaches. This method advances PLI prediction via innovative modality fusion and guided knowledge transfer, paving the way for accelerated drug discovery pipelines. Code and data are freely available at <span><span>https://github.com/brian-zZZ/Guided-PLI</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"235 ","pages":"Pages 64-70"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325000283","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of protein–ligand interaction (PLI) is crucial for drug discovery and development. However, existing methods often struggle with effectively integrating heterogeneous protein and ligand data modalities and optimizing knowledge transfer from pretraining to the target task. This paper proposes a novel transferability-guided PLI prediction method that maximizes knowledge transfer by deeply integrating protein and ligand representations through a cross-attention mechanism and incorporating transferability metrics to guide fine-tuning. The cross-attention mechanism facilitates interactive information exchange between modalities, enabling the model to capture intricate interdependencies. Meanwhile, the transferability-guided strategy quantifies transferability from pretraining tasks and incorporates it into the training objective, ensuring the effective utilization of beneficial knowledge while mitigating negative transfer. Extensive experiments demonstrate significant and consistent improvements over traditional fine-tuning, validated by statistical tests. Ablation studies highlight the pivotal role of cross-attention, and quantitative analysis reveals the method’s ability to reduce harmful transfer. Our guided strategy provides a paradigm for more comprehensive utilization of pretraining knowledge, offering prospects for enhancing other PLI prediction approaches. This method advances PLI prediction via innovative modality fusion and guided knowledge transfer, paving the way for accelerated drug discovery pipelines. Code and data are freely available at https://github.com/brian-zZZ/Guided-PLI.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.